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Abstract
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conformal vector field and has no conjugate points along its null geodesics is given.
Moreover, equality holds if and only if the manifold has constant sectional curvature.
This inequality can be improved if the timelike vector field is assumed to be Killing. As
an indirect application of our technique, it is proved that a Lorentzian torus with no
conjugate points along its timelike geodesics and admitting a timelike Killing vector field
must be flat.
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1. Introduction

Conjugate points on geodesics of a Lorentzian manifold have been sistematically stud-
ied [BEE, Chaps. 10, 11], [O’N, Chap. 10]. Of course, their definition in Lorentzian
geometry is formally the same as the Riemannian case, but there are here several geo-
metric behaviours which are not possible or have no sense for a Riemannian manifold.
In fact, on a Lorentzian manifold the geodesics are divided into three classes, spacelike,
null and timelike, according to their causal character, and consequently conjugate points
are classified into spacelike, null and timelike points (last two cases, i.e. causal conjugate
points, have been extensively considered because their Physical meaning). Let us remark
that there are also different approaches and techniques to deal with timelike or null con-
jugate points. With respect to this class of conjugate points, let us recall that no null
geodesic in a 2−dimensional Lorentzian manifold has conjugate points [BEE, Lemma
10.45]. On the other hand, there is a simple but surprising fact which asserts that there
are no null conjugate points (i.e conjugate points on null geodesics) in a Lorentzian ma-
nifold of constant sectional curvature. The converse obviously is not true; in fact, it is
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easy to construct a Lorentzian manifold (even geodesically complete) with no null conju-
gate points and which does not have constant sectional curvature. The following question
arises then in a natural way:

Under what assumption a Lorentzian manifold with no conjugate points along its null
geodesics has constant sectional curvature?

The main aim of this paper is to find a satisfactory answer to this question. In order
to face it, we will introduce an integral inequality on a remarkable family of Lorentzian
manifolds such that no null geodesic contains a pair of mutually conjugate points.

Our efforts to deal with this problem have been inspired from several important con-
tributions in Riemannian geometry. Following the philosophy to extend properties of
Riemannian manifolds of nonpositive seccional curvature to Riemannian manifolds with
no conjugate points, E. Hopf [Hp] proved in 1948 that

The total scalar curvature of a closed surface with no conjugate points is nonpositive and
vanishes only if the surface is flat.

Therefore, this result combined with the Gauss-Bonnet theorem gives the following
relevant fact

A Riemannian torus with no conjugate points must be flat.

Note that the same conclusion trivially holds if the Riemannian metric on the torus is
assumed to have nonpositive Gauss curvature. The Hopf theorem was extended by L.W.
Green [Gr] to any dimension to obtain

If a compact Riemannian manifold (B, g) has no conjugate points then its scalar curvature
S satisfies ∫

B

S dµg ≤ 0,

and equality holds if and only if the metric is flat.

More recently, F. Guimaraes [Gu] has generalized Green’s theorem to complete Rie-
mannian manifolds under the assumption that the Ricci curvature has an integrable
positive or negative part on the unit tangent bundle.

Let us recall now that the no conjugancy assumption on a fixed geodesic in a Rieman-
nian manifold or a causal geodesic in a Lorentzian manifold has been used by Ehrlich
and Kim in [EK, Th. 3.1] to obtain a generalization of the Hawking-Penrose conjugancy
theorem (see [BEE, Th. 12.18], for instance) of Singularity theory.

In this paper we will consider two assumptions on the Lorentzian manifolds to give an
answer to the previous question: compacteness and the existence of certain symmetry of
the metric tensor defined by a timelike conformal vector field. The first requirement is
due to technical reasons (we will use integration on the manifold) and that we set our
approach into global geometry. Of course, a compact Lorentzian manifold is not always
geodesically complete but, as it was proved in [RS1] a compact Lorentzian manifold
which admits a timelike conformal vector field must be geodesically complete.

Let us remark that the study of conformal vector fields (with certain causal character)
on Lorentzian manifolds is a topic of special importance. It has been developed mainly
under assumptions of interest in Physics. On the other hand, the Bochner technique
on compact Lorentzian manifolds admitting a timelike conformal (and more general)
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vector field [RS2], [RS3], [R] has shown to be fruitfull to get several obstructions and
classifications results. The particular case of timelike Killing vector fields was previously
considered as a useful tool to get several kinds of classification results in Lorentzian
Geometry [KR], [Ka], [Sa1], [ARS1], [Sa2] and references therein.

The main results of this paper are Theorem 4·1 and Corollary 4·3 and can be summa-
rized as follows:

If (M, g) is an n(≥ 3)−dimensional compact Lorentzian manifold with no null conjugate
points and which admits a timelike conformal vector field K, then

∫

M

[nRic(U,U) + S]hndµg ≤ 0

and equality holds if and only if (M, g) has constant sectional curvature.

Here Ric and S are, respectively the Ricci tensor and the scalar curvature of (M, g),
h is the function 1/

√
−g(K,K) and U is the unit timelike vector field hK.

If the conformal vector field K is assumed to be Killing this result can be improved,
Theorem 4·5, to get

If (M, g) is an n(≥ 3)−dimensional compact Lorentzian manifold with no null conjugate
points and which admits a timelike Killing vector field K, then

∫

M

Shndµg ≤ 0

and equality holds if and only if (M, g) is isometric to a flat Lorentzian n−torus up to a
(finite) covering. In particular, in this case K is parallel, the first Betti number of M is
not zero and the Levi-Civita connection of g is Riemannian.

This result widely extends a theorem of Kamishima. In fact, he proved in [Ka, Th. A]
that if a compact Lorentzian manifold with constant sectional curvature k ∈ R admits a
timelike Killing vector field, then k ≤ 0. Moreover, if k = 0, then the manifold is affinelly
diffeomorphic to a Riemannian manifold with non zero first Betti number. It should be
noted that Kamishima uses a very different technique in [Ka], strongly depending on the
Lie group machinery of Lorentzian space forms, than the present one.

Moreover, Theorem 4·5 permits to reprove in Corollary 4·7 the Hopf-Green inequality
in Riemannian Geometry [Gr] previously mentioned.

Although we deal here with null conjugate points on n ≥ 3−dimensional Lorentzian
manifolds, by the use of a trick we are able to prove Corollary 4·9 that

A compact Lorentzian surface admitting a timelike Killing vector field with no conjugate
point along its timelike geodesic must be flat.

This result resembles Hopf theorem [Hp], but in our case the no conjugancy hypothesis
involves only timelike geodesics. It should be noted that a Lorentzian torus which admits
a timelike Killing vector field is conformally flat [Sa1]. Theorem 4·9 gives an answer to
the natural question to decide when a Lorentzian torus with a timelike Killing vector field
must be flat. Finally, in the last section we illustrate our results on remarkable examples
of compact Lorentzian manifolds.
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2. Preliminaries

Let (M, g) be an n(≥ 2)−dimensional Lorentzian manifold; that is a (connected)
smooth manifold M endowed with a non-degenerate metric g with signature (−, +, ..., +).
We shall write ∇ for the Levi-Civita connection of g, R for its Riemannian curvature
tensor (our convention on the curvature tensor is R(X, Y )Z = ∇X∇Y Z − ∇Y∇XZ −
∇[X,Y ]Z), Ric for its Ricci tensor, S for its scalar curvature and dµg for the canonical
measure associated with g.

As usual, the causal character of a tangent vector v ∈ TpM is timelike (resp. null,
spacelike) if g(v, v) < 0 (resp. g(v, v) = 0 and v 6= 0, g(v, v) > 0 or v = 0). If v ∈ TpM

then, γv will denote the unique (maximal) geodesic which satisfies γ′v(0) = v. The causal
character of γ′v(t) is independent of t and it is called the causal character of the geodesic.
A null geodesic γv of (M, g) is then a geodesic such that v is a null vector. From now on,
we will write P b

a for the parallel translation along γv from γv(a) to γv(b).
Unless we indicate otherwise, (M, g) will denote an n(≥ 3)−dimensional Lorentzian

manifold which admits a timelike vector field K. We put h = 1/
√
−g(K,K) and write

U = hK for the normalized vector field obtained from K.
Recall [Ha], [Ko] that the null congruence on M associated to K is the subset of the

tangent bundle TM given by

CKM = {v ∈ TM : g(v, v) = 0 and g(v, Kπv) = 1},
where π : TM −→ M is the natural projection. This subset is an orientable embedded
submanifold of TM with dimension 2(n − 1), and can be naturally endowed with the
Lorentzian metric ĝ obtained by restriction of the Sasaki metric g of TM (note that g is
non-degenerate with signature (−,−, +, ..., +)). Moreover, now π : (CKM, ĝ) → (M, g)
is a semi-Riemannian submersion with spacelike fibers.

Let us suppose that the vector field K is conformal (i.e. LKg = ρg with ρ ∈ C∞(M)).
Under that assumption we have that CKM is invariant by any (local) flow of the geodesic
vector field. Furthermore, if M is also assumed to be compact, then it must be geodesically
complete [RS1], and moreover, in this case, we have

∫

CKM

(f ◦ Φt) dµĝ =
∫

CKM

f dµĝ, (2·1)

for all f ∈ C0(M) and t ∈ R where Φt(v) = γ′v(t) is the geodesic flow. (See details on
those properties of CKM in [GPR]).

As a key tool to get our main results in this paper we will use [GPR, Th. 3.2] which
reads as follows: Let (M, g) be an n(≥ 3)-dimensional compact Lorentzian manifold that
admits a timelike conformal vector field K. If there is a > 0 such that every null geodesic
γv, with v ∈ CKM , has no conjugate point of γv(0) in [0, a), then

Vol(CKM) ≥ a2

π2(n− 2)

∫

CKM

R̃ic dµĝ, (2·2)

where R̃ic denotes the quadratic form associated with the Ricci tensor. Moreover, equality
in (2·2) has been characterized by using null sectional curvature.

In order to fix the notation to be used later, we recall the well-known notion of warped
product (see [O’N, Def. 7.33], for instance). Let (B, gB) and (F, gF ) be semi-Riemannian
manifolds. We write πB and πF for the projections of B×F onto B and F , respectively.
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Let f > 0 a smooth function on B. The warped product B×f F is the product manifold
B × F furnished with the metric tensor gf = πB

∗(gB) + (f ◦ πB)2πF
∗(gF ).

3. Null Geodesics with no Conjugate Points

It is well-known that if γv : [0, a] −→ M is a null geodesic such that there is no
conjugate point of γv(0) in [0, a), then the Hessian form H⊥

γv
is positive semidefinite, i.e.

it satisfies

H⊥
γv

(V, V ) =
∫ a

0

[
g
(∇V

dt
,
∇V

dt

)
− g(R(V, γ′v)γ′v, V )

]
dt ≥ 0, (3·1)

for every piecewise smooth vector field V along γv such that V (0) = 0, V (a) = 0 and
g(γ′v, V ) = 0, [O’N, p. 290-1].

The following construction, similar to the one made in [BEE, Chap. 10], emerges
in a natural way in our setting. For every null tangent vector v ∈ TpM , we consider
the quotient vector space N (v) = 〈v〉⊥�〈v〉, where 〈v〉 denotes the vector subspace
of TpM spanned by v. If x ∈ 〈v〉⊥, then [x] will denote the element of N (v) defined
by its equivalence class. Next, we will project on N (v) several geometric objects to
be used later. Given [x], [y] ∈ N (v), if we put g([x], [y]) = g(x, y), then g is a (well-
defined) positive definite scalar product on N (v). The curvature operator may also be
projected on N (v) as R([x], v)v = [R(x, v)v]. Finally, since P t

0(v) = γ′v(t) we can define
P

t

0[x] = [P t
0(x)] ∈ N (γ′v(t)).

To face our end, γv(t) is considered to be defined for all t ∈ R. Let X(γv) be the
C∞(R)−module of vector fields along γv and X⊥(γv) = {V ∈ X(γv) : g(V, γ′v) = 0},
which is clearly a submodule of X(γv). If [V ] ∈ X⊥(γv)/〈γ′v〉, where 〈γ′v〉 denotes the
submodule of X⊥(γv) spanned by γ′v, then we can define [V ](t) to be [V (t)] ∈ N (γ′v(t)).
Now, it is natural to put ∇[V ]

dt =
[
∇V
dt

]
. Finally, if [V ](0) = [0], [V ](a) = [0], we set

H
⊥
γv

([V ], [V ]) = H⊥
γv

(V, V ) where V ∈ [V ] with V (0) = 0 and V (a) = 0.
A class [V ] is said to be a Jacobi class along γv if

∇2
[V ]

dt2
+ R([V ], γ′v)γ′v = [0].

It is not difficult to show that γv(0) and γv(a), with a 6= 0, are conjugate along γv if
and only if there exists a Jacobi class [V ](6= [0]) along γv which satisfies [V ](0) = [0] and
[V ](a) = [0]. In fact, any representant V ∈ X⊥(γv) of such a Jacobi class must satisfy

∇2V

dt2
+ R(V, γ′v)γ′v = fγ′v,

where V (0) = τ1v, V (a) = τ2γ
′
v(a), with τ1, τ2 ∈ R, and f is a smooth function. In this

case, if we choose a function F such that d2F
dt2 = f , then

J(t) = V (t) +
[ (a− t)(F (0)− τ1) + t(F (a)− τ2)

a
− F (t)

]
γ′v(t)

is a nonzero Jacobi vector field along γv, with J(0) = 0 and J(a) = 0.
Several properties of Jacobi classes below are similar to the well-known ones of the

Jacobi vector fields; for instance [O’N, Lemmas 10.15, 10.16] give respectively:

Lemma 3·1.
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(1) For every Jacobi classes [V ], [W ] along γv, with [V ](c) = [W ](c) = [0] for some
c ∈ R, we have

g
(∇[V ]

dt
, [W ]

)
= g

(
[V ],

∇[W ]
dt

)
. (3·2)

(2) If [J1], ..., [Jk] are Jacobi classes along γv such that [Ji] and [Jj ] satisfy previous
equation (3·2) for all i, j and we put [X] =

∑k
j=1 λj [Jj ] ∈ X⊥(γv)/〈γ′v〉, with [X](0) = [0]

and [X](a) = [0], then

H⊥
γv|[0,a]

([X], [X]) =
∫ a

0

g
( k∑

i=1

dλi

dt
[Ji],

k∑

j=1

dλj

dt
[Jj ]

)
dt. (3·3)

¥
Let End(N (v)) be the space of all R−linear operators of N (v) andR : R→ End(N (v))

the smooth path in End(N (v)) given by R(t) = P
0

t ◦ R( , γ′v(t))γ′v(t) ◦ P
t

0. From the
classical symmetries of the curvature tensor R we get thatR(t) is self-adjoint with respect
to g. One associates to R the matrix Jacobi equation

d2X
dt2

+R(t) ◦ X = 0, (3·4)

where X : R → N (v) is smooth. One easily checks that [J ] is a Jacobi class along γv if
and only if X (t) = P

0

t [J(t)] is a solution to (3·4).
In all what follows A will represent the solution to (3·4) determined from the initial

conditions A(0) = 0 and dA
dt |0= Id, where Id denotes the identity transformation.

For every x ∈ 〈v〉⊥, let us denote Jx the unique Jacobi vector field along γv such that
Jx(0) = 0 and ∇Jx

dt |0= x. It is not difficult to show that A(t)[x] = P
0

t [Jx(t)].

Lemma 3·2. Let γv be a null geodesic, then there is no conjugate point of γv(0) along
γv if and only if KerA(t) = 0 for all t 6= 0.

Proof. Let J be a nonzero Jacobi field along γv such that J(0) = 0 and J(a) = 0 for
a 6= 0. If ∇J

dt |0= x, then 0 6= [x] ∈ KerA(a). If 0 6= [x] ∈ KerA(a), then [Z] = [Jx] is a
Jacobi class and satisfies [Z](0) = [0], [Z](a) = [0] but [Z] 6= [0]. ¥

If γv has no pair of mutually conjugate points, then for any c 6= 0, let Bc be the solution
to (3·4) determined from the boundary data Bc(0) = Id, and Bc(c) = 0. Clearly, it
satisfies Bc(t)[x] = P

0

t [Ic
x(t)] where Ic

x is the unique Jacobi vector field along γv such that
Ic
x(0) = x and Ic

x(c) = 0. A similar argument as in [Gr] or [Ch, Chap.5], permits assert
that there exists lim c→+∞ dBc

dt |0= dB
dt |0 and taking B as the solution to (3·4) determined

from the initial data B(0) = Id and dB
dt |0, the continuous dependence of solutions on

the initial data gives that lim c→+∞Bc(t) = B(t) and lim c→+∞ dBc

dt |t= dB
dt |t, with B(t)

non singular for all t ≥ 0.

Corollary 3·3. If γv has no a pair of mutually conjugate points, then for every
[x] ∈ N (v), [x] 6= [0], there exists a Jacobi class [Ix] such that [Ix] = lim c→+∞[Ic

x] and
∇[Ix]

dt = lim c→+∞
∇[Ic

x]
dt . Moreover [Ix](t) 6= 0 for all t ≥ 0.

Proof. It is enought to take [Ix](t) = P
t

0(B(t)[x]). ¥

Remark 3·4. It should be pointed out that the previous construction is analogous to
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the one made in [BEE, Chap. 12]. However, the ingredients of equation (3·4) differs from
the used ones in the above mentioned cite.

4. Integral Inequalities and their Applications
Theorem 4·1. Let (M, g) be an n(≥ 3)-dimensional compact Lorentzian manifold

admitting a timelike conformal vector field K. If (M, g) has no conjugate points along its
null geodesics, then

∫

CKM

R̃ic dµĝ ≤ 0. (4·1)

Moreover, equality holds if and only if (M, g) has constant sectional curvature k ≤ 0.

Proof. The inequality (4·1) follows taking into account that if (M, g) has no conjugate
points along its null geodesics, then previous inequality (2·2) is valid for any positive real
number a.

Now, we will show, in the equality case, that R̃ic = 0 on null tangent vectors. For
every v ∈ CKM , let {E1, ..., En−2} be a parallel frame along γv such that {E1(0) =
e1, ..., En−2(0) = en−2} give us an orthonormal basis for 〈v〉⊥ ∩ K⊥

πv with R̃ic(γ′v) =∑n−2
j=1 g(R(Ej , γ

′
v)γ′v, Ej). It is easily seem that {[E1](t), ..., [En−2](t)} is a basis ofN (γ′v(t))

for all t. We put Xc
i (t) = cos(πt

2c )Ei(t) for every integer c ≥ 1, and take Ic
i the unique

Jacobi vector field along γv such that Ic
i (0) = ei and Ic

i (c) = 0.
It follows that {[Ic

1 ](t), ..., [Ic
n−2](t)} is a basis of N (γ′v(t)), for each t 6= c, since there

are no conjugate points along γv. Therefore, there are smooth functions λc
ij such that

[Xc
i ] =

n−2∑

j=1

λc
ij [I

c
j ], (4·2)

on R − {c}, but taking into account that Xc
i (c) = Ic

i (c) = 0 it is not hard to show that
every function λc

ij has a smooth extension to R. From Corollary 3·3, there exist Jacobi
classes [Ij ] = lim c→+∞[Ic

j ], and it is clear that lim c→∞[Xc
i ] = [Ei]. Hence, there are

smooth functions λij = lim c→∞ λc
ij such that

[Ei] =
n−2∑

j=1

λij [Ij ]. (4·3)

Taking into account that lim c→+∞
∇[Xc

i ]
dt = 0 and lim c→+∞

∇[Ic
j ]

dt = ∇[Ij ]
dt , a straightfor-

ward computation from (4·2) and (4·3) gives lim c→+∞
dλc

ij

dt = dλij

dt .
On the other hand, we get

n−2∑

i=1

H
⊥
γv|[−c,c]

([Xc
i ], [Xc

i ]) =

∫ c

−c

[ (n− 2)π2

4c2
sin 2

(πt

2c

)
− cos 2

(πt

2c

)
R̃ic(γ′v)

]
dt ≥ 0.

Next, let {fc} be the following sequence of nonnegative continuous functions

fc : CKM → R, v 7→
n−2∑

i=1

H
⊥
γv|[−c,c]

([Xc
i ], [Xc

i ]).
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If equality holds in (4·1) and we take into account (2·1) and
∫ c

−c
sin 2(πt

2c )dt = c, then we
have ∫

CKM

fc dµĝ =
(n− 2)π2

4c
Vol(CKM, ĝ).

Threrefore, the Fatou lemma implies that
∫

CKM
lim inf fc dµĝ = 0, and so lim inf fc(v) =

0 for almost all v ∈ CKM . Assume now we are considering such a v ∈ CKM . Since
0 ≤ H

⊥
γv|[−c,c]

([Xc
i ], [Xc

i ]) ≤ fc(v) holds, we have

lim inf H
⊥
γv|[−c,c]

([Xc
i ], [Xc

i ]) = 0, (4·4)

for every i = 1, ..., n− 2.
From Lemma 3·1 we obtain

H
⊥
γv|[−c,c]

([Xc
i ], [Xc

i ]) =
∫ c

−c

g
( n−2∑

j=1

dλc
i,j

dt
[Ic

j ],
n−2∑

j=1

dλc
i,j

dt
[Ic

j ]
)
dt, (4·5)

and so, from (4·4), by using the Fatou lemma again, we get

g
( n−2∑

j=1

dλij

dt
[Ij ],

n−2∑

j=1

dλij

dt
[Ij ]

)
= 0, for almost all t ≥ 0. (4·6)

But g is positive definite, and therefore previous (4·6) implies
∑n−2

j=1
dλij

dt [Ij ] = [0] on
[0, +∞). Since [Ij ](t) 6= [0] for all j = 1, ..., n − 2 and t ≥ 0, we infer from (4·3) that
{[I1](t), ..., [In−2](t)} is a basis of N (γ′v(t)) which implies that all λij are constant on
[0, +∞). Therefore, every [Ei] is a Jacobi class on [0,+∞). We achieve that R̃ic(v) = 0
for almost every v ∈ CKM . An standard continuity argument gives R̃ic = 0 on null
tangent vectors of (M, g).

By using [EK], we deduce that R( , γ′v)γ′v = [0] for every null vector v and so [O’N,
Prop. 8.28] combined with the Schur theorem gives that (M, g) has constant sectional
curvature k.

Since (M, g) must be geodesic complete from a result of completeness by Klingler [Kl]
(this fact can be also deduced from [RS1]) it should be globally isometric to a quotient
of the De Sitter space. Nevertheless, it is classical [CM] that no discrete subgroup of the
isometry group of the De Sitter space which acts properly and discontinouslly produces
a compact quotient of the De Sitter space. In brief, there exists no compact Lorentzian
manifold of positive constant curvature. Therefore, we conclude k ≤ 0 as required. ¥

Remark 4·2. Compare Theorem 4·1 with [EK] where it is assumed that there is no
conjugate points along a fixed null geodesic, and the conclusion only concerns to that
geodesic.

Taking into account [GPR, Prop. 2.3 and Lemma 3.4], Theorem 4·1 can be rewriten
as follows

Corollary 4·3. Let (M, g) be an n(≥ 3)-dimensional compact Lorentzian manifold
admitting a timelike conformal vector field K. If (M, g) has no conjugate points along its
null geodesics, then ∫

M

[n R̃ic(U) + S]hndµg ≤ 0. (4·7)
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Moreover, equality holds if and only if (M, g) has constant sectional curvature k ≤ 0.

Counter-example 4·4. Corollary 4·3 (or Theorem 4·1) does not remain true for
compact Lorentzian surfaces. In fact, let (M, g) be a compact Lorentzian surface admit-
ting a timelike conformal vector field. Now, we recall that there are no null conjugate
points on two dimensional Lorentzian manifolds, and that, clearly, R̃ic = 0 holds on null
tangent vectors in this case. Thus, if Corollary 4·3 were applicable, then (M, g) should
have constant Gauss curvature. But now the Gauss-Bonnet theorem for Lorentzian sur-
faces (see [BN], for instance) can be claimed to get that (M, g) must be flat. However,
it is known that there exist nonflat Lorentzian tori which admit a timelike Killing vector
field [Sa1].

If the vector field K is assumed, more restrictibly, to be Killing, then [GPR, Cor. 3.10]
can be improved as follows

Theorem 4·5. Let (M, g) be an n ≥ 3-dimensional compact Lorentzian manifold with
no conjugate points along its null geodesics and admitting a timelike Killing vector field
K, then ∫

M

Shndµg ≤ 0. (4·8)

Equality holds if and only if (M, g) is isometric to a flat Lorentzian n−torus up to a
(finite) covering. In particular, in this case U is parallel, the first Betti number of M is
not zero and the Levi-Civita connection of g is Riemannian.

Proof. The inequality is clear from Corollary 4·3 taking into account [GPR, Lemma
3.7]. If equality holds in (4·8), then

∫
M

hnR̃ic(U) dµg = 0. On the other hand, Corol-
lary 4·3 says that (M, g) has constant sectional curvature k ≤ 0; in fact, k = 0 from
our assumption. Let us consider the Riemannian metric gR defined by gR(X,Y ) =
g(X, Y ) + 2g(X, U)g(Y,U), for every X, Y ∈ X(M). Making use of [GPR, Lemma 3.7],
the vector field U must be parallel. Hence, the Levi-Civita connection associated to gR

on M agrees with the Levi-Civita connection of g (in particular, the 1−form ω, given
by ω(X) = g(X,U), is closed and clearly is not exact). Therefore, (M, gR) is a compact
flat Riemannian manifold and then, from [W, Cor. 3.46], there is a (finite) Rieman-
nian covering ρ : (Tn, g0

R) → (M, gR) by a flat Riemannian torus. It is easily seen that
ρ : (Tn, g0) → (M, g) is a Lorentzian covering, where g0

R and g0 are related in a similar
way as previous gR and g. ¥

Remark 4·6. Kamishima proved in [Ka, Th. A] that if a compact Lorentzian ma-
nifold with constant sectional curvature k ∈ R admits a timelike Killing vector field,
then it is geodesically complete and k ≤ 0. Moreover, if k = 0, then the manifold is
affinelly diffeomorphic to a Riemannian manifold with non zero first Betti number. So
that Corollary 4·5 is a wide extension to this result. It should be noted that Kamishima
uses a very different technique in [Ka] than the present one; in fact his tools are strongly
depending on the Lie group machinery of Lorentzian space forms (see [RS2], [RS3] for
another extensions of the Kamishima result).

Theorem 4·5 contains, as a very particular case, the classical Green result in Rieman-
nian geometry ([Gr], [Ch, Th. 5.11]) mentioned in the introduction.
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Corollary 4·7. Let (B, g) be a compact Riemannian manifold of dimension n ≥ 2
and scalar curvature S. If (B, g) has no conjugate points then

∫

M

S dµg ≤ 0.

Moreover, equality holds if and only if (B, g) is flat.

Proof. Consider the Lorentzian manifold (M, gL) = (S1 ×B,−gcan + g), where S1 is the
unit circle and gcan denote its canonical metric. We may take the vector field K as the
lift to S1 × B of the vector field z 7−→ iz on S1 ⊂ C. Now, we have only to specialize
Theorem 4·5 to this Lorentzian manifold. ¥

Remark 4·8. Theorem 4·5 cannot be extended to the case in which K is assumed
to be conformal. In fact, let (T2, g0) be a flat Riemannian torus and let us consider
(S1,−gcan) as previously. For every f ∈ C∞(S1), f > 0, the Lorentzian manifold S1×f T2

has no conjugate points along its null geodesics [FS, Th. 5.4]. If U is the vector field on
S1×F given by the lift of the vector field z 7−→ iz on S1 ⊂ C, then K = fU is a timelike
conformal vector field (see [ARS2], for instance).

Making use of the well-known formulae for the curvature of a warped product metric
[O’N, Chap. 7], we can write

∫

S1×T2
Sh3dµgf

= area(T2)
∫

S1

(
4f∆f + 2 ‖ gradf ‖2) /f3 dµgcan ,

where ∆, grad and ‖ ‖ are, respectively, the Laplacian, the gradient and the norm of
(S1, gcan). Now, the classical Green divergence theorem permits us to write

0 =
∫

S1
∆

( 1
f

)
dµgcan =

∫

S1

(
−∆f

f2
+

2 ‖ gradf ‖2
f3

)
dµgcan .

Hence, if f is not constant, then
∫
S1×T2 Sh3dµgf

> 0.

After showing Theorem 4·5, it might be natural to ask if the function hn which appears
in the integral inequality (4·8) could be omitted. At this time we don’t know the answer,
but we think that this is not possible.

As it was noted above, Corollary 4·5 cannot be used to study Lorentain surfaces. On
the other hand, it does not give consequences from assumptions on timelike conjugate
points. However, by means of a trick, the following result can be obtained.

Corollary 4·9. Let (M, g) be a compact Lorentzian surface admitting a timelike
Killing vector field K. If (M, g) has no conjugate points along its timelike geodesics,
then (M, g) must be flat.

Proof. Because M is 2−dimensional, no of its null geodesics has conjugate points. Using
this fact and the form of the geodesics in a semi-Riemannian product, we conclude that
the Lorentzian manifold (M×S1, g+gcan) has no conjugate points along its null geodesics.
Moreover, K naturally induces a timelike Killing vector field on this semi-Riemannian
product. From Theorem 4·5 we obtain

∫

M

Gh3dµg ≤ 0,

where G = (1/2)S is the Gauss curvature of M . Moreover equality holds if and only if
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(M, g) is flat. On the other hand, the integrand in (4·7) is [3R̃ic(U) + S]h3 = [−3G +
2G]h3 = −Gh3. So, Corollary 4·3 can be also claimed to get the opposite inequality to
the previous one. ¥

5. Examples

1. Compact standard static Lorentzian manifolds are warped products B ×f F with
(B, gB) a compact Riemannian manifold, dim B = n ≥ 2, and (F, gF ) = (S1,−gcan). If
K is the timelike vector field on B × S1 given by the lift of the vector field z 7−→ iz on
S1 ⊂ C, then h = 1/

√−gf (K, K) = 1/(f ◦ πB). Moreover, from [O’N, Lemma 12.37] K

is Killing.
Assume B ×f S1 has no conjugate points along its null geodesics. Using [O’N, Chap.

7], previous Corollary 4·3 gives
∫

B

[ (n− 1)∆f

fn+1
+

SB

fn

]
dµgB ≤ 0,

where ∆ and SB are the Laplacian and the scalar curvature of (B, gB), respectively.
Taking now into account ∆

(
−1
nfn

)
= ∆f

fn+1 − n+1
fn+2 ‖gradf‖2, the classical Green divergence

theorem permits us to write
∫

B

∆f

fn+1
dµgB = (n + 1)

∫

B

‖gradf‖2
fn+2

dµgB ≥ 0.

Therefore, if B ×f S1 has no conjugate points along its null geodesics, then
∫

B

SB

fn
dµgB

≤ 0,

and equality holds if and only if f is constant and (B, gB) is flat.
2. Generalized Robertson-Walker Compact Spacetimes are warped products B×fF with

(B, gB) = (S1,−gcan) and (F, gF ) a compact Riemannian manifold with dimF = n ≥ 2.
If U is the vector field on S1 × F given by the lift of the vector field z 7−→ iz on S1 ⊂ C,
then K = fU is a timelike conformal vector field, [ARS2] and h = 1/(f ◦ πS1). Assume
S1×f F has no conjugate points along its null geodesics (this happen if the fiber (F, gF )
has no conjugate points [FS, Theor. 5.4]). A straightforward computation, by using the
curvature formulae of a warped product [O’N, Chap. 7], permits to write (4·7) as follows

n(n− 1)Vol(F )
∫

S1

[ (f ′)2

f3
− f ′′

f2

]
dµgcan +

∫

F

SF dµgF

∫

S1

1
f3

dµgcan ≤ 0, (5·1)

where f ′ denotes U(f). This inequality can be also obtained from an inderect method. In
fact, we have ∆

(
−1
f

)
= − f ′′

f2 + 2(f ′)2

f3 (∆ denotes here the Laplacian operator for −gcan;

i.e. ∆ = −∆0, where ∆0 = d2

dθ2 is the usual Laplacian of S1). Now, with the help of the
classical Green divergence theorem, (5·1) is rewriten as follows

∫

F

SF dµgF

∫

S1

1
f3

dµgcan ≤ n(n− 1)Vol(F )
∫

S1

(f ′)2

f3
dµgcan ,

which is of course true if it is noted that
∫

F
SF dµg ≤ 0 because of the Green theorem. In

the equality case, S1 ×f F has constant sectional curvature k ≤ 0. Therefore R̃ic(U) =
−nk = −nf ′′

f . On the other hand, ∆ (lnf) = − f ′′

f + (f ′)2

f2 , and so we use again the
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divergence theorem to get that f is constant (i.e. S1 ×f F is, in fact, a semi-Riemannian
product) and k = 0. Therefore the fiber (F, gF ) must be flat (alternatively, this can be
also achieved observing that equality in (5·1) gives

∫
F

SF dµg = 0, and now the Green
theorem can be claimed again).
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