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1. Introduction

Let (M, g) be an m-dimensional space-time, m > 2. B. Schmidt introduced the notion of b-completion to attach a singular
point to every inextensible timelike curve with finite fibre Length, [ 1]. This notion is relevant because it attaches a singularity
to every inextensible timelike curve with finite proper time and bounded acceleration, in particular to inextensible timelike
geodesics, [2]. The resulting set formed by the space-time and its singularities is equipped with a topology. The construction
is based on the introduction of a Riemannian metric g in a connected component of the frame bundle LM, which depends
only on the space-time data. Right translations by elements of the structure group are uniformly continuous, thus the
Cauchy completion LM of the associated metric space inherits a natural action of the structure group. The orbit space with
the quotient topology is the b-completion M, of the space-time. The same construction can be made from a connected
component of the orthonormal frame bundle OM and we have the same result, [3,4].

In general b-completion is not Hausdorff. This happens in some classical space-times, for example in Friedmann
spaces. Moreover in the closed Friedmann space, Big bang and Big crunch are identified as the same singular point in its
b-completion, [5-7].

An attempt to improve those drawbacks can be done introducing a Riemannian metric directly in the space-time such
that it depends only on the space-time data. The Cauchy singular boundary introduced in [8] is an example of it. The authors
use the Sachs metric g;" on the unitary bundle UM and a section § : M — UM to define a Riemannian metric gt = £*g;" in
M. They found a sufficient condition such that the construction is unambiguous.
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It seems interesting to know possible relationships between different notions of singularities in a space-time. In this
note we show that when the above construction is well defined, then the Cauchy singular completion is homeomorphic to
Schmidt b-completion.

A survey on singularity theory can be found in [9] and the references therein.

2. Cauchy singular boundary

We recall the construction of the Cauchy singular boundary. Let (M, g) be a space-time, and 7Y : UM — M the
timelike unit bundle, where UM = {X € TM/g(X,X) = —1}. It is a regular submanifold of TM and can be seen as an
associated bundle of the orthonormal frame bundle 7 : OM — M. In fact, take the Minkowski space (R™, ) and define
X = {h € R™/n(h, h) = —1} which is diffeomorphic to O;(m — 1) /O(m — 1). The group O;(m — 1) acts in an obvious way
on OM on the right and on R on the left, thus it defines a right action on OM x X whose quotient is denoted OM X ¢, m—1) ¥.
The map ¢ : OM Xg,m-1) 8 — UM given by v ([u, h]) = u(h) is an isomorphism, where u € OM is interpreted as the
isometry u : (R™, n) = (TrwM, &rw))-

The Levi-Civita connection V of (M, g) defines a connection VY over the map 7Y, VY : x(UM) x x(zY) — x(=Y),

being X (V) the module of vector fields over 7V, [10]. Let {E, . . ., E,—1} be a local basis of vector fields on an open set V of

M. An element A € X(r) has a local expression A = 3 1" ' A’E; o 7 on (JTU)_] (V), thatis, {EgomV,...,En_jomV}isa

local basis for (V) and the component functions A are differentiable on (71”)7l (V).TakeY € T,UM,anda € (71”)71 V),
then

m—1 m—1
VWA= YA)E,uq+ Y AW@Y,u yEi
i=0 i=0

In particular, the canonical inclusion I : UM — TM is an element of X(srY), thus it defines a map

® :TUM — T™M
Y > VI

The Sachs metric is the Riemannian metric on UM defined by
&5 (Y, 2) =gy, o 2) + 28 (Y, [(@)g(n,Z, 1(a) + 2(O(Y), O(2)),

forY,Z e T,UM, [11].
Fixed a section X : M — UM, we have a Riemannian metric on M given by g™ = X*g;*. The Cauchy completion with the
induced distance is the Cauchy singular completion M. of the space-time. The Cauchy singular boundary is M. = M. — M.

3. Equivalence with Schmidt b-completion

There is a 1:1 correspondence between reductions of a principal bundle to a subfibre bundle with closed structure group,
and sections of the associated bundle. In our case, a section X : M — UM has an associated O(m — 1)-structure. The Cauchy
singular completion depends on the choice of this section X.

Suppose that the Levi-Civita connection of (M, g) is reducible to an O(m — 1)-structure. In this case we can chose its
associated section to do the construction. We must be sure that if the connection is reducible to another O(m — 1)-structure
(i.e. associated to another section Y : M — UM), the Cauchy singular completion is the same. In this case, the construction
is well defined in the sense that it only depends on the space-time data.

The key point is that a connection on a principal bundle is reducible to a subbundle with closed structure group if and
only if its associate section is parallel, [12]. This allow us to prove the following result.

Theorem 1. Let (M, g) be an m-dimensional space—time such that its Levi-Civita connection is reducible to an O(m—1)-structure.
Then the Cauchy singular completion induced by the associated section does not depend on the particular O(m — 1)-structure.
Moreover it is homeomorphic to b-completion.

Proof. We compute g™ = X*g;". Letx € M be a fixed point and {Xo, . . . , Xn—1} an orthonormal basis of local vector fields in
an open set which contains the point x, and such that X, = X, the parallel vector field associated to the O(m — 1)-structure
where the connection is reducible. Take V € T,M, then

m—1 m—1

OXuxV) = D XV (X, + D 1K @I Viavy  xvXe
k=0 k=0
= VWX =0,

where we use the fact that I¥(X (x)) = 85 is the k-component of X, in the basis {Xo, ..., Xn—1}.



1198 M. Gutiérrez / Journal of Geometry and Physics 59 (2009) 1196-1198

Thus if V, W € X(M), we have
gr VvV, W) =g(V,W) +2g(V, X)g(W, X),

with X timelike unitary and parallel. It is well know that two metrics g and g+ with the above relation have the same Levi-
Civita connection, thus they have the same b-completion. On the other hand, (M, g*) is a Riemannian manifold and its
b-completion is just its Cauchy completion (M, d) computed with its associated distance d, [1]. Thus M, = (M, d) = M,
and this proves both claims. O

Observe that there are two kinds of reductions. First the fibre bundle must be reducible to an O(m— 1)-structure. This does
not impose any restriction because it is equivalent to the existence of a timelike vector field, and this is an usual hypothesis
in the definition of space-time. On the other hand, the Levi-Civita connection must be reducible to an O(m — 1)-structure,
and this is a too strong restriction. In fact, the existence of a timelike and parallel vector field in a space-time implies that
locally the space-time is a direct product, and there are no classic space-times with such a vector field.

Observe that if the space-time is globally a direct product, it is possible to compute its b-completion as a product of its
factors, [3,4].
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