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Abstract We give some relations between conjugate points and curvature in a locally
symmetric Lorentzian manifold. In the compact case, we show that the sectional curvature
of timelike planes is non positive, and the lightlike sectional curvature of null planes is non
negative. We also compute the lightlike conjugate loci of Cahen–Wallach manifolds, which
are an important family of symmetric Lorentzian spaces.
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1 Introduction

In this article, we obtain geometric consequences from the study of conjugate points in
Lorentz symmetric spaces. One of them is suggested by the classification theorem for simply
connected Lorentz symmetric spaces. It is easy to see that there exist compact quotients of
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some spaces in this classification which have non-positive curvature for all timelike planes, so
it is natural to ask: given M a compact (non necessarily simply connected) Lorentz symmetric
space, does M have non-positive curvature for all its timelike planes? A first attempt to tackle
the question is to use M̃ , the universal covering space of M , which, by the classification the-
orem, is a direct product of a Riemannian symmetric space and a Lorentz factor, see Sect. 4.
Now, M is a compact quotient of M̃ by a suitable group of isometries, but M may not be a
product with compact factors nor M̃ compact in general, so we cannot apply known results
on the curvature of compact Riemann symmetric spaces.

We give a positive answer to this question in Theorem 2, and apply it to show that in
compact Lorentz symmetric spaces, there are not conjugate points along timelike geodesics
if and only if they are flat. On the other hand, if furthermore dim M ≥ 3, there are not conju-
gate points along lightlike geodesics if and only if they have constant curvature k ≤ 0. This
exhibits a subtle difference between conjugate points on a timelike and a lightlike geodesic.

We apply some of the above ideas to Cahen–Wallach manifolds, i.e., Lorentz symmetric
spaces diffeomorphic to R

n+2 and parameterized by a symmetric endomorphism f : R
n →

R
n , which were introduced in [3] to classify simply connected Lorentz symmetric spaces.

We establish a relationship between the eigenvalues of f and those of the Jacobi operator of
any vector, which allows us to study the existence and location of conjugate points. Using
this, we prove Theorem 3 where we show that Cahen–Wallach manifolds are geodesically
connected and compute the lightlike conjugate loci of any point, obtaining that it must be
empty or a paraboloid whose expression is explicitly given. We also show the existence of
a foliation invariant by parallel transport whose leaves are complete, flat, totally geodesics
and lightlike hypersurfaces.

2 Preliminaries

The curvature tensor of a Lorentzian manifold (M, g) is given by RXY Z = ∇X∇Y Z −
∇Y ∇X Z − ∇[X,Y ] Z , where X, Y, Z ∈ X(M). Given a plane σ = span{u, v}, we denote
by k(σ ) the sectional curvature, if σ is non-degenerated whereas if σ is degenerated with
v lightlike, then Kv(σ ) = g(Ruvv,u)

g(u,u)
is the lightlike sectional curvature associated to v [8].

Observe that the sign of Kv(σ ) and Kv′(σ ) are the same for lightlike v, v′ ∈ σ .
Given v ∈ Tp M the Jacobi operator is the endomorphism Rv : Tp M −→ Tp M given by

Rv(u) = Ruvv. We also denote by Rv to its associated matrix with respect to a fixed basis.
Since the Jacobi operator is self-adjoint, Rv can be one of the following types

– Type I: diagonalizable with respect to an orthonormal basis.
– Type II: there exist a, b ∈ R, b �= 0, such that

Rv =
⎛
⎝

a b 0
−b a 0
0 0 Dn−2

⎞
⎠

with respect to an orthonormal basis, where Dk represents a diagonal matrix of order k.
– Type III: there exists λ ∈ R such that

Rv =
⎛
⎝

λ 0 0
ε λ 0
0 0 Dn−2

⎞
⎠ , with ε = ±1,

with respect to a pseudoorthonormal basis {u, w, e3, ..., en}.
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– Type IV: there exists λ ∈ R such that

Rv =

⎛
⎜⎜⎝

λ 0 1 0
0 λ 0 0
0 1 λ 0
0 0 0 Dn−3

⎞
⎟⎟⎠

with respect to a pseudoorthonormal basis {u, w, e3, . . . , en}.
In some cases, a little more can be said. For example, if v is timelike, Rv is necessarily of

type I, whereas if v is lightlike, then Rv can be only of type I, III, and IV. Moreover, in this
last case, if it is of type I, there exists an orthonormal basis such that Rv = diag(λ1, . . . , λn)

with λ1 = λ2 = 0. On the other hand, if Rv is of type III or IV, we can choose the pseudo-
orthonormal basis {u, w, e3, . . . , en} such that the parameter λ in the upper box is zero and
v = w (resp. v = u) when Rv is of type III (resp. of type IV). If v is spacelike then any type
is possible suggesting once more the difficulties in handling spacelike geodesics.

Given γ a geodesic in M , a conjugate point of γ (0) is a point γ (t0) such that there is a
non-trivial solution J (t) to the Jacobi equation J ′′ + Rγ ′ J = 0 with boundary conditions
J (0) = 0 and J (t0) = 0.

A semi-Riemmanian manifold is locally symmetric, if the curvature tensor is parallel.
Conjugate points in locally symmetric Lorentzian manifolds can be easily computed as the
following theorem shows (although this result was known by the authors for some time,
it should be attributed to [10], where it has been first published in the more general semi-
Riemannian setting).

Theorem 1 Let γv : I −→ M, v ∈ Tp M, be a geodesic in a Lorentz locally symmetric
manifold. Then the conjugate points of γv(0) along γv are γv(

πk√
λ
), where k ∈ Z − {0} with

kπ√
λ

∈ I , and λ is a real positive eigenvalue of Rv . The multiplicity of γv(t0) as a conjugate

point is the number of eigenvalues λ ∈ R
+ of Rv such that t0 is a multiple of π√

λ
.

On the other hand, a semi-Riemannian manifold is symmetric if for each p ∈ M there is
an isometry ξp : M −→ M with ξ(p) = p and ξ∗p = −id . If γ is a geodesic in M with
γ (0) = p, then τt : M −→ M given by τt (q) = ξγ ( t

2 ) ◦ ξγ (0)(q) is a transvection along γ for

each t ∈ R [13]. In the Riemannian case, it is well-known that the transvection τt induces a
complete Killing vector field on M . The same is true in the semi-Riemannian setting. From
the smooth dependence of solutions of an ordinary differential equation with respect to initial
data, it is easy to see that in a semi-Riemannian symmetric manifold, the global symmetries
induce a smooth map ξ : M × M −→ M defined by ξ(p, q) = ξp(q).

Lemma 1 In a semi-Riemannian symmetric manifold (M, g), the family {τt }t∈R is a one
parameter group of isometries.

Proof Consider τ : R −→ I (M) given by τ(t) = τt , which is a Lie group morphism being
I (M) the isometry group of (M, g). Then it is enough to see that it is continuous. For this,
observe that τt = ξγ ( t

2 ) ◦ ξγ (0) = µ(ξγ ( t
2 ), ξγ (0)), where µ : I (M)× I (M) −→ I (M) is the

product in I (M). ��
The following result has a proof identical to the Riemannian case [11].

Lemma 2 Let (M, g) be a semi-Riemannian symmetric space, γ : R → M a non-constant
geodesic. Let Y (t) be a Jacobi field along γ such that Y ′(0) = 0. Then Y (t) is the restriction
to γ of a Killing vector field K . In fact, K p = ∂τs (p)

∂s |s=0 where τs is the one parameter
group of transvections along the geodesic b(s) = expγ (0)(sY (0)).
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3 Lorentz symmetric spaces

Analyzing the Jacobi operator, we can apply Theorem 1 to improve, in the category of Lorentz
symmetric spaces, some Rauch comparison results in Lorentz geometry [1,8].

Proposition 1 Let (M, g) be a Lorentz symmetric manifold, p ∈ M and v ∈ Tp M.

1. If v is timelike, then p has not conjugate points along γv if and only if k(σ ) ≥ 0 where
σ ⊂ Tp M is any timelike plane containing v.

2. If v is lightlike, then p has not conjugate points along γv if and only if Kv(σ ) ≤ 0 for
any degenerate plane σ ⊂ Tp M containing v.

Proof 1. Being v timelike, there exists an orthonormal basis {E1, . . . , En} with v = aE1,
such that the Jacobi operator is Rv = diag{0, λ2, . . . , λn} with non positive eigenvalues
λi by hypothesis. Let u = ∑n

i=1 ui Ei ∈ Tp M be such that σ = span{u, v} is a timelike
plane, then

k(σ ) =
∑n

i=2 u2
i λi

g(u, u)g(v, v) − g(u, v)2 ≥ 0.

Observe now that the sectional curvature k(σ (t)) is constant, where σ(t) is the parall-
ely propagated plane along γv(t) of a timelike plane σ ⊂ Tp M containing v, thus the
sectional curvature of the timelike planes containing γ ′

v(t) is non-negative. If we call
J (t) a Jacobi field along γv , perpendicular to γv with J (0) = 0, it is easy to see that the
function h(s) = g(J (s), J (s)) is zero only at s = 0. Thus p has not conjugate points
along γv .

2. Suppose that p has not conjugate points along γv , with v ∈ Tp M a lightlike vector.
Then there exists a basis {E1, . . . , En} such that the Jacobi operator is of type I, III, or
IV. Let u = ∑n

i=1 ui Ei be a unit vector such that σ = span{u, v} is a degenerate plane.
For Rv of type I, it is immediate.
Suppose Rv is of type III. We take a pseudoorthonormal basis with v = E2 such that on
it, we can write

Rv =

⎛
⎜⎜⎜⎜⎜⎝

0 0
ε 0

λ3
. . .

λn

⎞
⎟⎟⎟⎟⎟⎠

with λi ≤ 0. From g(u, v) = 0, we get u1 = 0, then

Kv(σ ) =
n∑

i=3

u2
i λi ≤ 0.

If Rv is of type IV, the basis is pseudoorthonormal with v = E1 and

Rv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0
0 1 0

λ4
. . .

λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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being λi ≤ 0, obtaining Kv(σ ) = ∑n
i=4 u2

i λi ≤ 0.
On the other hand, given σ ⊂ Tp M any degenerate plane containing v, let σ(t) be
the parallely transported along γv of σ . For any t, σ (t) is degenerate and Kγ ′

v
(σ (t)) is

constant, thus non-positive along γv . This means that the lightlike sectional curvature
of any degenerate plane containing γ ′

v(t) is non-positive. The result follows as in the
above item.

��
The “only if” parts in the above proposition are not true in general as the following example

shows.

Example 1 Let (R × R
n,−dt2 + f 2η) be a warped product being η the euclidean metric

in R
n . We know that non-spacelike geodesics have not conjugate points [5]. Let γv(s) =

(s, γ2(s)) be a non-spacelike geodesic. There are planes π(s) containing γ ′
v(s) such that

g(Ru(s)γ ′
v(s)γ

′
v(s), u(s)) have the sign of f ′′(s), where π(s) = span{u(s), γ ′

v(s)}. But the
warping function f is an arbitrary positive function.

The following result shows that in a Lorentz symmetric space, the first conjugate point is
a meeting point of any geodesic variation. Although the proof is like in the Riemannian case,
we give it here to make precise the argument given in [11].

Proposition 2 Let (M, g) be a Lorentz symmetric manifold, γ : R → M a geodesic with
γ (t1) the first conjugate point of γ (0) along γ . Then any geodesic variation of γ|[0,t1] has
its ends fixed. Moreover, the length of the curves of the variation is constant.

Proof Call {E1(t), . . . , En(t)} the parallely propagated basis along γ in which Rγ ′(t) can be
written as a constant matrix of one of the four types given in Sect. 2. By Theorem 1 there exists
λ a positive eigenvalue of Rγ ′(0) satisfying t1 = π√

λ
. Observe that we have used that γ (t1)

is the first conjugate point to ensure that the numerator in the expression of t1 is just π . Let
Y (t) be a non trivial Jacobi field with Y (0) = Y (t1) = 0, then Y (t) = ∑r

j=1 a j sin
√

λt Ei j

where r is the multiplicity of λ, a j ∈ R and it verifies Y ′( t1
2 ) = 0. Let τs be the 1-parameter

group generated by Y ( t1
2 ). Since Y (t) is the Killing vector field of τs in γ (t) (Lemma 2), we

find that the geodesic τs ◦ γ pass through γ (0) and γ (t1). ��
Example 2 Take M = SL(2, R) endowed with the bi-invariant Lorentz structure induced
by 〈A, B〉= trace(AB), with A, B ∈ sl(2, R). This defines on M a structure of Lorentz
symmetric space. The curvature operator is given by RXY Z = − 1

4 [[X, Y ], Z ] for X, Y, Z ∈
sl(2, R).

Consider the Jacobi operator RV (X) = − 1
4 X V 2 − 1

4 V 2 X + 1
2 V X V . If V =

(
a b
c −a

)
,

the matrix of RV in the standard basis of sl(2, R) is

RV =

⎛
⎜⎜⎜⎜⎝

−bc
ac

2
ab
2

ab
−2a2 − bc

2
b2

2

ac
c2

2
−2a2−bc

2

⎞
⎟⎟⎟⎟⎠

with eigenvalue −(a2 + bc) = − 1
2 〈V, V 〉 associated to the eigenvectors (c,−2a, 0) and

(0,−b, c), and 0 associated to V . Thus, if V is lightlike or spacelike, there are not conjugate
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points along the geodesic γV . If V is timelike then exp
( nπ√

−1
2 <V,V >

)
, with n ∈ Z − {0} are

conjugate points with multiplicity 2, in virtue of Theorem 1.
We can compute explicitly the conjugate loci of I ∈ SL(2, R). Call λ = −(a2 +bc) > 0,

then

γV (t) = exp(tV ) = cos
√

λt I + 1√
λ

sin
√

λtV,

and the first conjugate point is γV ( π√
λ
) = −I. Thus the conjugate loci of I is −I , and due

to the symmetry of the space, the conjugate loci of any point A ∈ SL(2, R) is −A.
Note that we have computed the whole conjugate loci, which coincides with the timelike

conjugate loci. On the other hand, lightlike geodesics from a point have not conjugate points,
whereas timelike ones all pass through the antipode.

The ideas developed above have applications in the compact case. Take (M, g) = (S1 ×
N ,−dt2 + gN ) with (N , gN ) a compact Riemannian symmetric space. It is straightforward
to see that the sectional curvature of a timelike plane is non-positive. If we change S

1 with
a compact Cahen–Wallach space (see the next section) in the above example, we have the
same result. These examples are inspired in the classification of simply connected Lorentz
symmetric spaces, but we cannot use it further to know if this is a general result for compact
Lorentz symmetric spaces. Recall that Kv(σ ) denotes the lightlike sectional curvature of the
lightlike plane σ associated to the lightlike vector v ∈ σ .

Theorem 2 Let (M, g) be a compact Lorentz symmetric space.

1. The sectional curvature verifies k(σ ) ≤ 0 for any timelike plane σ .
2. If dim M ≥ 3, then Kv(σ ) ≥ 0 for any degenerate plane σ and any lightlike vector

v ∈ σ .

Proof 1. Let σ be a timelike plane such that k(σ ) > 0. Take {v,w} an orthonormal basis
of σ with v a timelike vector and {E1 = v, . . . , Em} an orthonormal basis where the
Jacobi operator Rv is

Rv =

⎛
⎜⎜⎜⎝

0
λ2

. . .

λm

⎞
⎟⎟⎟⎠

Let us write w = ∑m
i=1 wi Ei , then

0 < k(σ ) = −
∑

i, j≥2

w2
i λi ,

thus there must be some eigenvalue λi < 0 of Rv . The rest of the proof is as in the
Riemannian case but we include it for the sake of completeness. Consider the parallely
propagated basis {E1, . . . , Em} along the geodesic γv , then J (t) = cosh

√−λi t Ei (t)
is a Jacobi field on γv with J ′(0) = 0. Lemma 2 says that there exists a Killing vector
field K ∈ X(M) with Kγv = J , but M is compact and |K | is continuous on M , thus
|J (t)| must be bounded above. Contradiction.

2. We follow the argument in the above proof, so it suffices to show that if there were a
degenerate plane σ and a lightlike vector v ∈ σ such that Kv(σ ) < 0, then there would
exist a negative eigenvalue of Rv .
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The Jacobi operator can be of type I, III, or IV because v is lightlike. We only prove the
type IV because type III is simpler and type I is as in the previous proof.

We can take a pseudoorthonormal basis {v = E1, . . . , Em} such that on it the Jacobi
operator Rv is

Rv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0 0
0 1 0

λ4

0
. . .

λm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Let w be a unit spacelike vector such that {v,w} is a basis of σ . Then g(w, v) = 0 implies
w = ∑m

i �=2 wi Ei , and we have

Kv(σ ) = w2
3g(Rv E3, E3) + 2

∑
j≥4

w3w j g(Rv E3, E j ) +
m∑

i=4

w2
i λi

where the first two summands are zero. If dim M = 3 then Kv(σ ) = 0 and the theorem
follows, otherwise there exists a negative eigenvalue. ��

The following corollary shows a difference between the role of conjugate points along
timelike and lightlike geodesics which reflects the different role of sectional curvature and
lightlike sectional curvature in Lorentz geometry. Both notions are related by the follow-
ing fact: if a Lorentz manifold has zero lightlike sectional curvature, then it has constant
curvature.

Corollary 1 Let (M, g) be a compact Lorentz symmetric space, then

1. There are not conjugate points along timelike geodesics if and only if it is flat.
2. If dim M ≥ 3, then there are not conjugate points along lightlike geodesics if and only

if it has constant sectional curvature k ≤ 0.

Proof In both cases, the “if” part of the proof are general results in Lorentz geometry, we
see the “only if” part.

1. The hypothesis, Lemma 1 and Theorem 2 implies k(σ ) = 0 for any timelike plane, thus
k = 0 [13].

2. The hypothesis, Lemma 1 and Theorem 2 implies Kv(σ ) = 0 for any degenerate plane
σ , thus the sectional curvature is constant, and is nonpositive due to the same Theorem 2.

��
In [7], it was shown that a compact Lorentz surface admitting a timelike Killing vector

field with no conjugate point along its timelike geodesics must be flat.
We finish this section with an application to Riemannian geometry which we do not find

in the literature. Recall that a simply connected Riemannian symmetric space (M, g) can be
expressed as a product whose factors are compact, non-compact, or euclidean [13].

Proposition 3 Let M be a simply connected Riemannian symmetric space which admits a
compact quotient. Then M has not factors of non-compact type.

123



98 Ann Glob Anal Geom (2010) 37:91–101

Proof Call M/
 the compact quotient. If N is a factor of M of non-compact type, there
exists a plane σ in N with curvature k(σ ) < 0 strictly. Take S

1 × M with metric −dt2 + gM

which is a Lorentz symmetric space. Let π = span{u, v} be a timelike plane in S
1 × M , with

u = e1 + e2, being e1 ∈ T S
1 and {e2, v} a basis of σ , then

g(Ruvv, u) = g(Re2vv, e2) < 0,

thus k(π) > 0. This implies that there is a timelike plane with positive curvature in the
compact quotient (S1 × M)/{1} × 
, in contradiction with Theorem 2. ��

4 Cahen–Wallach manifolds

It is well-known that a simply connected Lorentz symmetric space is isometric to a product
of a simply connected Riemannian symmetric space and one of the following: (R,−dt2),
a complete simply connected Lorentz manifold of constant curvature or a Cahen–Wallach
manifold [2].

Cahen–Wallach manifolds were introduced in [3], and they are defined as follows. Let
g = R

n × R
n × R × R with n ≥ 1 be considered as a Lie algebra with Lie bracket

[(x, y, t, u), (x ′, y′, t ′, u′)] = (u′y − uy′, u f (x ′) − u′ f (x), 〈 f (x ′), y〉
−〈 f (x), y′〉, 0)

where 〈, 〉 is the euclidean metric on R
n and f : R

n → R
n is a symmetric endomorphism.

The set h = {(x, 0, 0, 0) : x ∈ R
n} ⊂ g is an abelian subalgebra. Take G the simply con-

nected Lie group generated by g, H the connected subgroup generated by h which is a closed
subgroup of G, and m = {(0, y, t, u) : y ∈ R

n, t, u ∈ R} ⊂ g which is an AdH -invariant
supplementary of h in g. Let q((0, y, t, u), (0, y′, t ′, u′)) = 〈y, y′〉 − tu′ − t ′u be a Lorentz
product on m. It induces an invariant metric on M = G�H . With this metric, it is a Lorentz
symmetric manifold diffeomorphic to R

n+2 which is called Cahen–Wallach manifold.
The Jacobi operator is given by

RV (X) = −[[X, V ], V ] = (0, u f (uy′ − u′y), 〈 f (uy′ − u′y), y〉, 0),

where V = (0, y, t, u), X = (0, y′, t ′, u′) ∈ m.
A Cahen–Wallach manifold is flat if and only if f = 0, it is Ricci flat if and only if

trace( f ) = 0. On the other hand, there are not Cahen–Wallach manifolds of constant curva-
ture other than flats. In fact, if V = (0, y, t, u), X = (0, y′, t ′, u′) form an orthonormal basis
for a non-degenerate plane π in m we have k(π) = ε〈 f (w),w〉, being ε = q(V, V )q(X, X)

and w = uy′ − u′y. We may choose the above vectors V and X with {y, y′} orthonormal
and u = u′ = 0, thus k(π) = 0.

The following lemma shows that the conjugate points of γ (0) along γ are codified by the
positives eigenvalues of f . The proof is straightforward.

Lemma 3 Let γ be a geodesic through ē ∈ M with γ ′(0) = (0, y, t, u). If u = 0, then
γ has not conjugate point. Otherwise, the eigenvalues of Rγ ′(0) are zero with multiplicity
dim K er f +2, and λi = µi u2 being µi the non-zero eigenvalues of f (both λi and µi with
the same multiplicity).

If f has a positive eigenvalue, then using Theorem 1 there are geodesics of any causal
character with conjugate points. In particular, we have
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Corollary 2 In a Ricci flat but non-flat Cahen–Wallach manifold, there are geodesics of any
causal character with conjugate points.

The following theorem shows the geodesic connectivity and describes the lightlike
conjugate loci of any point in a Cahen–Wallach manifold. Suppose that µ1 ≥ · · · ≥ µn

are the eigenvalues of f.

Theorem 3 Cahen–Wallach manifold are geodesically connected. Moreover, the future
(past) lightlike conjugate loci of any point is empty or a paraboloid whose dimension is
the number of eigenvalues of f different from µ1.

Proof Consider M as R
n × R × R. It is enough to compute the geodesics starting at the

origin.
Let {e1, . . . , en} be an orthonormal basis of R

n formed with eigenvectors of f .
Given a point (y0, t0, u0) ∈ M , with y0 = ∑n

i = 1 yi ei , we can define a global chart
(x1, . . . , xn, xn+1, xn+2)on M which assigns to (y0, t0, u0) the coordinates (y1, . . . , yn, t0, u0).
The metric in this chart is

⎛
⎝

I 0 0
0 0 −1
0 −1

∑n
i=1 −µi x2

i

⎞
⎠

where I is the identity matrix of order n, the Christoffel symbols are


n+1
i n+2 = µi xi , 
i

n+2 n+2 = µi xi i = 1, . . . , n.

Suppose that µ1 ≥ · · · ≥ µp > 0 = µp+1 = · · · = µq > µq+1 ≥ · · · ≥ µn , where
0 ≤ p ≤ q ≤ n. The geodesic γ with γ (0) = 0 ∈ M is given by

γi =
⎧⎨
⎩

ai sin(ci s) i = 1, . . . , p
ai s i = p + 1, . . . , q
ai sinh(di s) i = q + 1, . . . , n

γn+1 =
p∑

i=1

µi ua2
i

2ci
sin(ci s) cos(ci s) −

n∑
i=q+1

µi ua2
i

2di
sinh(di s) cosh(di s) + es

γn+2 = us,

being ai ∈ R, ci = √
µi u2, and di = √−µi u2.

Given a point (y1, . . . , yn, t0, u0) ∈ M and a point s0 ∈ R such that sin(ci s0) �= 0 �=
cos(ci s0), the above system for s0 fixed and (γ1, . . . , γn+2) = (y1, . . . , yn, t0, u0) can be
solved in the variables a1, . . . , an, u, e. Thus any point can be joined with a geodesic to
e ∈ M , and, by symmetry, to any other point. Then it is geodesically connected.

Let us now consider that γ is a lightlike geodesic. By Lemma 3 if u = 0 then γ has not
conjugate points. Thus we take u �= 0 and suppose u > 0 points in the future direction. The
eigenvalues of Rγ ′(0) are zero and µ j u2. If all the eigenvalues of f are non-positive then the
conjugate loci of γ (0) is empty by Theorem 1.
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The geodesic γ is lightlike if and only if 2eu = ∑q
i=p+1 a2

i . Then using Theorem 1 again,
the first conjugate point of γ (0) along γ is

γ

(
π

c1

)
=

(
0, a2 sin

(
c2

c1
π

)
, ..., ap sin

(
cp

c1
π

)
, ap+1

π

c1
, ..., aq

π

c1
,

aq+1 sinh

(
dq+1

c1
π

)
, ..., an sinh

(
dn

c1
π

)
,−

p∑
i=2

µi ua2
i

2ci
sin

(
ci

c1
π

)
cos

(
ci

c1
π

)

+
q∑

i=p+1

a2
i π

2uc1
+

n∑
i=q+1

µi ua2
i

2di
sinh

(
di

c1
π

)
cosh

(
di

c1
π

)
, u

π

c1

⎞
⎠

which is the announced paraboloid. ��
Corollary 3 In a Cahen–Wallach manifold with f = µI d, the future lightlike conjugate
loci of any point is empty (if µ ≤ 0) or another point.

It is known that the universal anti-De Sitter space is not geodesically connected, thus the
above theorem can not be extended to all Lorentz symmetric spaces, [4].

We have found a distinguished n + 1-dimensional subspace p = {(0, y, t, 0) : y ∈
R

n, t ∈ R} of m such that every geodesic with initial velocity in it has not conjugate points.
It is an abelian subalgebra of g that verifies [h, p] ⊂ p. Let p : G → M = G�H be the
canonical projection. We have Adh(p) ⊂ p for every h ∈ H which allows us to induce a
distribution on M defined by p̄ḡ = p∗g (pg), where pg = Lg∗ep is the left invariant dis-
tribution on G defined by p. Observe that we can also write p∗g (pg) = L̄g∗ē p∗ep, where
L̄ : G × M → M is the action of G on M , showing that the distribution {p̄ḡ} is G-invariant.

There are other distinguished subalgebras of g contained in m but only r = {(0, 0, t, 0) :
t ∈ R} ⊂ p verifies the same properties than p, defining another G-invariant distribution on
M . Notice that p∗e : m → Tē M is an isomorphism, then dim p̄ḡ = n + 1, dim r̄ḡ = 1, both
r̄ḡ and p̄ḡ are degenerated for the Lorentz metric and r̄ḡ ⊂ p̄ḡ for every ḡ ∈ M .

The subalgebra p determines a complete, totally geodesic, and flat submanifold P through
ē ∈ M , because it is a Lie triple system with [[p, p], p] = 0. The submanifold can be deter-
mined by the condition Tē P = p∗e(p), expressed as P = expē p̄ē [9,12], or alternatively as
P = p(P), being P the connected subgroup of G induced by p, where we have used that
exp : p → P is onto because P is abelian.

The same is true for r word-by-word.

Proposition 4 Both distributions {p̄ḡ} and {r̄ḡ} are involutives. Moreover, the projection
p : G → M and the action of G on M are foliated maps for both distributions.

Proof Let ḡ ∈ M be arbitrary, and g ∈ G such that p(g) = ḡ. Using that L̄g : M → M is
a diffeomorphism, we get that S̄ = L̄g P̄ is a submanifold of M through ḡ. Let ā ∈ S̄, this
means that there exists z ∈ P such that ā = gz. Define a = gz ∈ G, then

Tā S̄ = L̄a∗ēTē P̄ = p∗a La∗ep = p̄ā .

This shows that S̄ is an integral submanifold of {p̄ā} through ḡ ∈ M .
The submanifold S = Lg P is a leaf of {pa} on G and p(S) = S̄, thus the projection

p : G → M takes leaves into integral submanifolds of {p̄ā}. Using that P̄ is complete it is
easy to see that they are maximal.

The action of G on M is foliated by construction.
The same argument works for {r̄ḡ}. ��
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The leaves of both distributions form two complete, flat, totally geodesics, and lightlike
foliations on M of codimension 1 and dimension 1, respectively. To compute them, note that
the group operation in P is given by

(0, y, t, 0)(0, y′, t ′, 0) = (0, y, t, 0) + (0, y′, t ′, 0)

(see [3]), thus the leaf of {p̄ḡ} through ā ∈ M , where a = (x, y, t, u) ∈ G, is R
n × R × {u},

and that of {r̄ḡ} is {0} × R × {u}.
Both distributions {p̄ḡ} and {r̄ḡ} are also invariant by parallel transport, (for n = 2 see

[2]). This is immediate from the fact that A(p̄) ⊂ r̄ for every A in the holonomy algebra.
In fact, take A = RZ T for some Z , T ∈ Tē M , where we identify Tē M with m and write
Z = (0, y′, t ′, u′) and T = (0, y′′, t ′′, u′′). Let V ∈ p̄ be arbitrary, V = (0, y, t, 0). Then

A(V ) = (0, 0,−〈 f (u′′y′ − u′y′′), y〉, 0) ∈ r̄.

References

1. Beem, J.K., Ehrhlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Marcel Dekker, Inc., New
York (1996)

2. Besse, A.L.: Einstein Manifolds. Springer-Verlag, New York (1987)
3. Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. Am. Math. Soc. 76, 585–591 (1970)
4. Calabi, E., Markus, L.: Relativistic space forms. Ann. Math. 75, 63–76 (1962)
5. Flores, J.L., Sánchez, M.: Geodesic connectedness and conjugate points in GRW spacetimes. J. Geom.

Phys. 30, 285–314 (2000)
6. Gutiérrez, M., Palomo, F.J., Romero, A.: A Berger-Green type inequality for compact Lorentzian Mani-

folds. Trans. Am. Math. Soc. 354, 4505–4523 (2002). (Erratum Trans. Am. Math. Soc. 355, 5119–5120
(2003))

7. Gutiérrez, M., Palomo, F.J., Romero, A.: Lorentzian manifolds with no null conjugate points. Math. Proc.
Camb. Philos. Soc. 137, 363–375 (2004)

8. Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31,
289–308 (1982)

9. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New
York (1978)

10. Javaloyes, M.A., Piccione, P.: Conjugate points and Maslov index in locally symmetric semi-Riemannian
manifolds. Differ. Geom. Appl. 24, 521–541 (2006)

11. Klingenberg, W.: Riemannian Geometry. Walter de Gruyter, Berlin (1982)
12. Kobayashi, S., Nomizu, K.: Foundation of Differential Geometry, vol. II. Wiley, New York (1969)
13. O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Academic Press, New

York (1983)

123


	Curvature and conjugate points in Lorentz symmetric spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Lorentz symmetric spaces
	4 Cahen--Wallach manifolds


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


