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Abstract The model of massless relativistic particle relying in a curvature-dependent action
functional is considered in the framework of generalized Robertson–Walker 4-spacetimes.
The discussion is based on the number of nonvanishing Frenet curvatures, and we obtain
characterizations, examples, and nonexistence results for the critical points of the action
functional, which are included in the fibers.
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1 Introduction

Action functionals are powerful tools to connect Mathematics and Physics. Indeed, many
authors have applied action functionals to study particles, [4,5,7,12,14–16], and models of
n-dimensional relativistic objects with rigidity, such as point particles (n = 0), [12–16],
strings (n = 1) [6,17], and membranes (n = 2) [11]. In this way, a natural variational
problem can be defined on a space of curves � in a Lorentzian manifold M ,
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260 M. A. Cañadas-Pinedo et al.

A : � −→ R, A(γ ) = −
∫

γ

(m + λκ1),

where κ1 is the first Frenet curvature of γ : [a, b] → M , m is the particle mass, λ is a real
parameter, and

∫
γ

h means
∫ b

a h(s)|γ ′(s)|ds for any differentiable function h : [a, b] → R.
The space � is supposed to be composed of reasonable curves, i. e., Frenet curves with a
causal character, either closed or clamped (satisfying certain first-order boundary conditions).
M. S. Plyushchay used this model to describe the massless relativistic particles, [14–16] in
the four-dimensional Minkowski space.

We recall the following construction, [1]. Given a Riemannian manifold (P, gP ) and a
smooth positive function f : I → R, where I is a real interval, the manifold P̄ = I × P ,
with the Lorentzian metric h = −dt2 + f (t)2gP is, by definition, a Generalized Robertson–
Walker spacetime with warping function f . For each t ∈ I , the spacelike submanifold {t}×P
is known as a fiber or a slice as well as the rest space at t . Whenever P is a connected space
of constant curvature c, P̄ is called a Robertson–Walker spacetime.

Barros et al. [2] studied those critical points of the total curvature action functional con-
tained in the rest spaces of Generalized Robertson–Walker 3-spacetimes, as a mathematical
test. Also, in the higher-dimensional case, Ferrández et al. [7] considered actions in (d + 1)-
dimensions associated with null curves, whose action functional is a linear function of the
curvature of the particle path.

This paper deals with critical points of the total curvature action functional

L : � −→ R, L(γ ) =
∫

γ

κ1,

where we consider Frenet curves of a generalized Robertson–Walker 4-spacetime contained
in the rest spaces. This is a further step with respect to [2] in the sense that we work in
the four-dimensional case, which is the most relevant dimension in relativity. The Euler–
Lagrange equation is more involved but richer, from a mathematical point of view, than
in lower dimensions. On the other hand, the analysis in a rest space is a priori compatible
with the model developed for the Minkowski space in [14], which has the peculiarity that its
classical equations of motion are consistent only for superrelativistic motion of a particle. We
work in a more general framework than the Minkowski space, so if it admits an interpretation
à la Plyushchay, it is still to be shown.

Section 2 is devoted to revising the Frenet apparatus of Frenet curves, in general semi-
Riemannian manifolds, and to determining the Euler–Lagrange equations for a Frenet curve
of order greater or equal than 2.

In Sect. 3, we focus on four-dimensional generalized Robertson–Walker spacetimes.
Namely, we take a Frenet curve γ with curvature κ and torsion τ in a three-dimensional
Riemannian manifold M , and we construct a curve γt in a fiber {t} × M and its Frenet appa-
ratus. With these tools, we study, in the following sections, the Euler–Lagrange equations
case by case, solving most of them. Surprisingly, it is not enough to solve the differential
equations arising in all cases. In this way, we introduce another frame along the Frenet curve
γt , which we call fiber-adapted frame, which allows us to solve the remaining cases.

In sects. 4 and 5, we study curves γt , which are the solutions of the Euler–Lagrange
equation of the total curvature action. Our results are based on the conditions involving κ ,
τ , the warping function f , and the curvature tensor R of M along the curve. With respect
to the curvature conditions, we found essentially two cases: in the first one, two specific
components of the curvature tensor along the curve are simple functions of the torsion of

123

Author's personal copy



Massless particles in generalized Robertson–Walker 4-spacetimes 261

the curve and we can analyze this case successfully. In the other case, general conditions for
these components are not found. Since we want to obtain nontrivial solutions, we impose
natural conditions on them compatible with the Robertson–Walker framework, obtaining
new solutions in a variety of interesting cases. We also prove that there are not solutions
satisfying those natural conditions in the most general situation, corresponding to four-order
Frenet curves with nonconstant curvature κ .

Section 4 is devoted to studying the case of critical slices, i. e., ḟ (t) = 0. In Theorem 1,
we see that a curve γt is a critical point of L if and only if either it is a geodesic in M̄ or two
specific components of the curvature tensor R along γ are simple functions of the torsion
and its first derivative.

Section 5 contains a discussion based on the order of the Frenet curve γt . For the case
of order two, the characterization of the critical points relies again on two conditions on
the curvature tensor along the curve. In addition, the curve γ should also satisfy that κ is a
constant and f̈ (t) = 0 (see Theorem 2). For Frenet curves of order 3, we impose the above-
mentioned natural conditions on the curvature tensor. Theorem 3 studies the case τ = 0,
whereas we pay attention to case τ �= 0 in Theorem 4. Remarkably, specific expressions of
the curvature and the torsion of the curve γ are obtained. For Frenet curves of order 4, we
have two cases. Firstly, when the curvature κ > 0 is constant, we obtain a characterization
or our critical points in terms of the curvature conditions as simple functions of the torsion
and its first derivative (see Theorem 5). However, when κ is not constant, by imposing the
natural curvature conditions, we reach to a nonexistence result in Theorem 6.

In addition, each theorem is followed by a corollary for the case of Robertson–Walker
4-spacetimes, since they satisfy the natural curvature conditions. Finally, each case of this
discussion is illustrated by an example.

We would like to point out that some of the computations have been made by using
elementary features of symbolic computation software.

The authors would like to thank the referees for their suggestions, which have helped to
improve the paper.

2 Preliminaries

Let (M̄, ḡ) be an oriented semi-Riemannian manifold of signature ν such that 0 ≤ ν ≤
n = dim M and let ∇̄ denote the Levi-Civita connection. We consider a smooth curve
γ̄ : J −→ M̄ , where J ⊂ R is an interval. The derivative of γ̄ will be denoted by γ̄ ′.

The curve γ̄ is called a Frenet curve of order d ∈ {1, ..., n−1} if there exists an orthonormal
system of vector fields along γ̄ , {E1, . . . , Ed}, and smooth functions κ1, . . . , κn−1 defined
on J , where E1 = γ̄ ′/ξ and ξ = √|ḡ(γ̄ ′, γ̄ ′)| is the speed of γ̄ ′ (not necessarily constant),
and κi > 0, i = 1, . . . , d −1 and κd = κd+1 . . . = κn−1 = 0, such that they verify the Frenet
equations

∇̄E1 E1 = ε2κ1 E2,

∇̄E1 Ei = −εi−1κi−1 Ei−1 + εi+1κi Ei+1, i = 2, . . . , d − 1,

∇̄E1 Ed = −εd−1κd−1 Ed−1,

being εi = g(Ei , Ei ) = ±1, i = 1, . . . , d .
If d = n, the same definition works except that we also impose the basis {E1, . . . , En}

to be positively oriented, then κi > 0, i = 1, . . . , n − 2, and function κn−1 could be either
positive or negative.
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262 M. A. Cañadas-Pinedo et al.

It is said that the Frenet curve has Frenet curvatures {κ1, . . . , κd−1} and Frenet system
{E1, . . . , Ed}. Both Frenet system and Frenet curvatures are unique, since the equations
provide a constructive method to obtain them. In this way, in order to ensure that the vector
fields Ei are everywhere well defined and smooth, it is necessary to suppose that the Frenet
curvatures will not be zero at isolated points.

Observe that a Frenet curve γ̄ of order 1 (κ1 = 0) satisfies ∇̄γ̄ ′ γ̄ ′ = (ln ξ)′γ̄ ′. Then, an
arc length reparametrization of γ̄ is a geodesic.

In this paper, we deal with four-dimensional Lorentzian manifolds, (M̄, ḡ). Then, the
Frenet equations of a Frenet curve of order 4 become

∇̄E1 E1 = ε2κ1 E2,

∇̄E1 E2 = −ε1κ1 E1 + ε3κ2 E3,

∇̄E1 E3 = −ε2κ2 E2 + ε4κ3 E4,

∇̄E1 E4 = −ε3κ3 E3 (1)

and we must arrange them in a obvious way to obtain the Frenet equations of a Frenet curve
of order 2 or 3.

Given p, q ∈ M̄ and v ∈ Tp M̄ , w ∈ Tq M̄ , we define

Γ = {γ̄ : [a, b] → M̄ / γ̄ ′(a) = v, γ̄ ′(b) = w}. (2)

In case p = q and v = w, the curves are called closed. Otherwise, they are known as
clamped.

We are interested in studying critical points of the total curvature action functional

L : Γ −→ R, γ̄ 	−→
∫

γ̄

κ1. (3)

A trivial family of critical points are Frenet curves of order 1, representing absolute minima
for the functional L. Thus, we study critical points among Frenet curves of greater order. To
determine them, we take a tangent vector at γ̄ ∈ Γ, which is nothing but a vector field W
along the curve γ̄ . The critical points of the variational problem are those curves γ̄ ∈ Γ such
that

δL(γ̄ )[W ] = 0, ∀W ∈ Tγ̄ Γ.

Some standard arguments allow us to compute the above expression. Indeed, if we call
Φ = Φ(s, r) : [a, b]× (−ε, ε) → M̄ the variation of γ̄ , with variational field W = W (s) =
(∂Φ/∂r)(s,0) and longitudinal field V = ∂Φ/∂s = ξ E1, we have [V, W ] = 0 (see [9],
Lemma 1.1), and we obtain ∇̄E1 W (a) = ∇̄E1 W (b) = 0. Thus, we have

δL(γ̄ )[W ] =
b∫

a

(
∂κ1(s, r)

∂r
ξ(s, r) + κ1(s, r)

∂ξ(s, r)

∂r

)
ds

=
b∫

a

ḡ(�(γ̄ ), W )ds + [B(γ̄ , W )
]b

a ,

where

�(γ̄ ) = ξ ∇̄E1∇̄E1 E2 + ε1κ
′
1 E1 + ε1κ1ξ ∇̄E1 E1 + ξ R̄(E2, E1)E1,

B(γ̄ , W ) = ḡ(∇̄E1 W, E2) − ḡ(W, ∇̄E1 E2) − ε1κ1 ḡ(W, E1),
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Massless particles in generalized Robertson–Walker 4-spacetimes 263

are, respectively, the Euler–Lagrange and the boundary operators, being R̄(X, Y )Z =
∇̄X ∇̄Y Z − ∇̄Y ∇̄X Z − ∇̄[X,Y ] Z the curvature operator of ḡ and κ ′

i the derivative of the
function κi with respect to the curve parameter. Consequently, [B(γ̄ , W )]b

a = 0. By using
Eq. (1), the Euler–Lagrange operator becomes

�(γ̄ ) = −ε2ε3ξκ2
2 E2 + ε3κ

′
2 E3 + ε3ε4ξκ2κ3 E4 + ξ R̄(E2, E1)E1,

with the obvious meaning for a Frenet curve of order 2 or 3.
Finally, the Frenet curve γ̄ of order ≥ 2 in Γ is a critical point of L if and only if it satisfies

the Euler–Lagrange equation

ξ R̄(E2, E1)E1 = ε2ε3ξκ2
2 E2 − ε3κ

′
2 E3 − ε3ε4ξκ2κ3 E4. (4)

3 Generalized Robertson-Walker spacetimes

Let (M, g) be an oriented three-dimensional Riemanninan manifold with Levi-Civita con-
nection ∇. Let γ be a unit curve on M with Frenet system {T = γ ′, N , B}, curvature function
κ and torsion τ , and Frenet equations

∇T T = κ N ,

∇T N = −κT + τ B,

∇T B = −τ N .

Given an open interval I ⊂ R and a positive smooth function f : I −→ R, we consider
the warped product

M̄ = I × M, ḡ = −dt2 + f 2g,

which is usually called Generalized Robertson–Walker Spacetime, since it was introduced in
[1]. Given a point t ∈ I , we define the space of curves

Γt = {γt ∈ Γ / γt (s) = (t, γ (s)), ∀s ∈ [a, b] and γ : [a, b] −→ M a unit curve}.
That is to say, we are embedding the curve γ in the slice {t}× M ⊂ M̄ . The Frenet system

of γt will be denoted as in Eq. (1). Anyway, a useful positive oriented orthonormal frame
along γt is the fiber-adapted frame

E1 = 1

f
T,

1

f
N ,

1

f
B, ∂t . (5)

In our case, some well-known formulas in warped spaces allow us to express the geometry
of (M̄, ḡ) in terms of the warping function f and the geometries of (I, dt2) and (M, g), [10].
In addition, the gradient of f is

grad f = − ḟ ∂t .

After some computations, we obtain

∇̄E1 E1 = κ

f 2 N + ḟ

f
∂t . (6)

Since γ is a unit curve in M , then γt is a Frenet curve with constant speed f (t).
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264 M. A. Cañadas-Pinedo et al.

For a Frenet curve of order 2 or greater, ∇̄E1 E1 cannot be light-like because E2 must be
a unitary vector. After (6), this is equivalent to

ḟ 2(t) − κ2(s) �= 0, f or any t ∈ I and s ∈ [a, b].
We will call

� =
√

ε2(κ2 − ḟ 2).

Similarly, for a Frenet curve of order 3 or greater, E3 cannot be light-like, thus

k2τ 2�2 − ε2 ḟ 2κ ′2 �= 0, f or any t ∈ I and s ∈ [a, b],
and we will put

Θ =
√

ε3
(
k2τ 2�2 − ε2 ḟ 2κ ′2).

Given γt a Frenet curve of order 4, we have its Frenet apparatus

E1 = 1

f
T, E2 = ε2 κ N + ε2 f ḟ ∂t

f �
,

E3 = −ε3 ḟ 2κ ′

f Θ�
N + ε2ε3κτ�

f Θ
B − ε3κ κ ′ ḟ

Θ�
∂t ,

E4 = ε2κτ ḟ

f Θ
N − ε2κ

′ ḟ

f Θ
B + ε2 f κ2τ

f Θ
∂t , (7)

κ1 = �

f
, κ2 = Θ

f �2 , κ3 = −ε3 ḟ �(κ2τ 3 + 2τ(κ ′)2 + κ(κ ′τ ′ − τκ ′′))
f Θ2 , (8)

where {E1, E2, E3, E4} is a positive frame.
The main target of this paper is to identify which of these curves γt ∈ Γt ⊂ Γ are

critical points of the action functional L given in (3), where Γ is given in (2) and we will just
consider the clamped case. Moreover, Eq. (6) points out that for γt to be a geodesic of M̄ , it is
necessary and sufficient that κ ≡ 0 and ḟ (t) = 0. In the sequel, we will find some solutions
whose associated γ will be a geodesic in M , although γt will not be a geodesics in M̄ .

4 Working in critical slices ḟ (t) = 0

In this section, we choose a point t ∈ I such that ḟ (t) = 0. Only in this case, critical
points of the functional L, which are also Frenet curves of order 1, may appear. We denote
RN T T A = g(R(N , T )T, A).

Theorem 1 Assume that t ∈ I is such that ḟ (t) = 0. Then, a Frenet curve γt ∈ Γt is a
critical point of L if and only if either it is a geodesic in M̄ or the following equations hold
RN T T N = τ 2, RN T T B = −τ ′.

Proof Suppose that γt is a Frenet curve of order ≥ 2. In this case, the Frenet apparatus of γt

is

E1 = T

f
, E2 = N

f
, E3 = δB

f
, E4 = δ ∂t , κ1 = κ

f
, κ2 = δτ

f
, κ3 = 0,

where we must suppose that τ is identically null or it does not change its sign δ = ±1. The
first case corresponds to Frenet curves of order 2 and the second one to Frenet curves of order
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Massless particles in generalized Robertson–Walker 4-spacetimes 265

3. Frenet curves of order 4 do not exist because κ3 = 0. The Euler–Lagrange equation (4)
becomes

R̄(E2, E1)E1 = τ 2

f 2 E2 − δτ ′

f 2 E3.

Observe that R̄(E2, E1)E2 = 1
f 3 R(N , T )T . Therefore, we get

R(N , T )T = τ 2 N − τ ′ B

and the result follows. �
Example 1 Take M = SO(3, R) the special orthogonal group with the bi-invariant metric
g defined by the scalar product g(X, Y ) = − 1

2 trace(XY ) in so(3, R). We take a curve
γ : R −→ SO(3, R) defined by

γ (s) = exp

⎛
⎜⎝

0 a cos s
r a sin s

r

−a cos s
r 0 0

−a sin s
r 0 0

⎞
⎟⎠ ,

where we put a ∈ (0, π) and r = √
2 − 2 cos a for convenience. It is easy to check that γ is

a unit curve in M . Since left translations Lγ (s) are isometries, given a vector field X ∈ X(γ ),
we can compute its covariant derivative along γ as

∇γ ′(s) X = (Lγ (s))∗
D

ds
((Lγ (s)−1)∗ X) = γ (s)

(
a′

1(s)e1 + a′
2(s)e2 + a′

3(s)e3
)
,

being (Lγ (s))∗ the derivative of Lγ (s). We have written (Lγ (s)−1)∗ X = a1(s)e1 + a2(s)e2 +
a3(s)e3 with {e1, e2, e3} the standard basis of so(3, R), and we have used that Dei

ds = 0,
i = 1, 2, 3. A standard computation gives the Frenet system of γ ,

κ = sin a

2 − 2 cos a
, τ = 1

2
, T = γ ′,

N =

⎛
⎜⎜⎝

sin a − cos a cos s
r − cos a sin s

r

cos a cos s
r sin a cos2 s

r
1
2 sin a sin 2s

r

cos a sin s
r

1
2 sin a sin 2s

r sin a sin2 s
r

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝

0 − sin a
2 sin s

r sin a
2 cos s

r

− sin a
2 sin s

r 0 sin a
r

sin a
2 cos s

r − sin a
r 0

⎞
⎟⎟⎠ .

To compute RN T T N and RN T T B , we use left translations again. For example, RN T T N =
g

(
R

(
γ t(s)N , γ t(s)T

)
γ t(s)T, γ t(s)N

)
,where we recallγ t(s) is the transpose of the matrix

γ (s), and use the formula R(X, Y )Z = − 1
4 [[X, Y ], Z ] for every X, Y, Z ∈ so(3, R) (see

[8]). Following this procedure, we have RN T T N = 1
4 , RN T T B = 0.

Now, in the warped product I × f M with metric −dt2 + f 2(t)g, given t ∈ I a critical
point of f , the curve γt (s) = (t, γ (s)) is in the hypothesis of Theorem 1.

Let us denote the unique complete, connected, simply connected, three-dimensional space
of constant curvature c ∈ R by M3(c). In other words, for c = 0, this is the Euclidean
3-space, for c > 0, it is a round 3-sphere, and for c < 0, it is a hyperbolic 3-space. Thus,
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266 M. A. Cañadas-Pinedo et al.

we can construct a Robertson–Walker spacetime I × f M3(c), for which it is clear that
RN T T N = c and RN T T B = 0. Then, we have the following.

Corollary 1 Given M̄ = I × f M3(c) a Robertson–Walker spacetime, assume that t ∈ I is
such that ḟ (t) = 0. Then, a Frenet curve γt ∈ Γt is a critical point of L if and only if either

1. It is a geodesic in M̄ or
2. The torsion τ of γ is a constant function such that c = τ 2.

Observe that c ≥ 0 and the curvature κ is arbitrary, so we have a wide range of examples.

5 Working in regular slices ḟ (t) �= 0

From now on, we will always take t ∈ I such that ḟ (t) �= 0, although we might not say it
explicitly. We make the discussion on the order of the Frenet curves.

5.1 Frenet curves of order 2. κ1 �= 0, κ2 = 0

Theorem 2 Assume that t ∈ I is such that ḟ (t) �= 0. Then, a Frenet curve γt ∈ Γt of order
2 is a critical point of L if and only if γ is a curve in M satisfying the following conditions.

1. Either it is a geodesic or κ is a constant and τ ≡ 0.
2. f̈ (t) = 0, RN T T B = 0 and RN T T N = − ḟ 2(t) along γ .

Proof The Frenet system is

κ1 = �

f
, E1 = 1

f
T, E2 = ε2 κ N + ε2 f ḟ ∂t

f �
,

and by (1), we have

0 = ∇̄E1 E2 + κ1 E1 = ε2

f 2�

(
ḟ 2κ ′

−κ2 + ḟ 2
N + κτ B − κ f ḟ κ ′

κ2 − ḟ 2
∂t

)
.

Therefore, κ ′ = 0, and κτ = 0. Thus, γt is a Frenet curve of order 2 if and only if either
γ is a geodesic in M , or we have κ > 0 a constant, and τ ≡ 0.

Now, the Euler–Lagrange equation (4) becomes

0 = R̄(E2, E1)E1 = ε2

f 3�

(
κ(R(N , T )T + ḟ 2 N ) + f 2 ḟ f̈ ∂t

)
.

Comparing coordinates with respect to the fiber-adapted frame, see (5), we get f̈ (t) = 0
and RN T T N = − ḟ 2. �
Example 2 Let H

2 be the real hyperbolic plane with the standard metric g0 of constant
sectional curvature −1. We consider β a unit curve in H

2 with constant curvature κβ > 0 and
normal vector Nβ . Given a smooth positive function h : H

2 −→ R, we consider the warped
product M = H

2 ×h R, g = g0 + h2dr2. Now, given a constant a ∈ R, we define the unit
curve γ (s) = (β(s), a). Its Frenet system is (up to lift to T M),

T = γ ′, N = Nβ, B = ∂r/h, κ = κβ, τγ = 0.

If R̂ and R are the curvature tensors of H
2 and M , respectively, R(N , T )T is the lift of

R̂(Nβ, γ ′)γ ′ along γ . Thus, along γ , RN T T N = −1 and RN T T B = 0 (see [10]).
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Massless particles in generalized Robertson–Walker 4-spacetimes 267

Finally, given M̄ = R× f M with f : I −→ R a positive function admitting a point t ∈ I
such that ḟ (t) = 1 and f̈ (t) = 0, the curve γt (s) = (t, γ (s)) is in the hypothesis of the
above theorem.

Corollary 2 Let M̄ = I × f M3(c) be a Robertson–Walker spacetime. Choose a point t ∈ I
such that ḟ (t) �= 0. Then, a Frenet curve γt ∈ Γt of order 2 is a critical point of L if and
only if γ is a curve in M3(c) satisfying the following conditions.

1. Either it is a geodesic or κ is a constant and τ ≡ 0.
2. f̈ (t) = 0 and c = − ḟ 2(t).

5.2 Frenet curves of order 3. κ1κ2 �= 0, κ3 = 0

From (8),

κ3 = −ε3 ḟ �(κ2τ 3 + 2τ(κ ′)2 + κ(κ ′τ ′ − τκ ′′))
f Θ2 = 0,

and we consider two cases.

5.2.1 Case τ ≡ 0

Theorem 3 Assume that t ∈ I is such that ḟ (t) �= 0 and γt ∈ Γt a Frenet curve of order 3
such that γ is a curve in M with τ = 0. Suppose also that RN T T N = c for some constant
c ∈ R. Then, γt is a critical point of L if and only if,

1. f̈ (t) < 0.
2. The curvature κ of γ is

κ(s) = ḟ tanh
(
±

√
− f f̈ s + C

)
, |κ(0)| < ḟ (t),

κ(s) = ḟ coth
(
±

√
− f f̈ s + C

)
, |κ(0)| > ḟ (t),

(9)

where C is an integration constant.
3. RN T T B = 0 and c = − ḟ (t)2 + f (t) f̈ (t) < 0.

Proof Note that ε3
(
k2τ 2�2 − ε2 ḟ 2κ ′2) > 0, thus, if τ = 0, we have −ε2ε3 ḟ 2κ ′2 > 0, that

is, ε2ε3 = −1. We define σ = ±1 as the sign of κ ′ ḟ , and compute the Frenet system [see
(7)], for γt ,

κ1 = �

f
, κ2 = σ ḟ κ ′

f �2 , κ3 = 0,

E1 = 1

f
T, E2 = ε2 κ

f �
N + ε2 ḟ

�
∂t , E3 = ε2σ ḟ

f �
N + ε2σκ

�
∂t .

By taking components in the fiber-adapted frame for the Euler–Lagrange equation (4) and
using that RN T T N = c in M3(c), we have

0 = κ4(c + ḟ 2) − κ2 ḟ 2(c + ḟ 2 + f f̈ ) + ḟ 2((κ ′)2 + f ḟ 2 f̈ ),

0 = κ3(c + ḟ 2 − f f̈ ) − κ(2(κ ′)2 + ḟ 2(c + ḟ 2 − f f̈ ) + (κ2 − ḟ 2)κ ′′.
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The first equation becomes

(κ ′)2 = − 1

ḟ 2
((κ2 − ḟ 2)(κ2(c + ḟ 2) − f ḟ 2 f̈ )

and introducing it in the second one, we get

κ ′′ = − 1

ḟ 2
κ((c + ḟ 2)(2κ2 + ḟ 2) + 3κ f f̈ .

Differentiating the first equation and subtracting it to 2κ ′ times the second one, we obtain
c = − ḟ 2 + f f̈ . Thus, the curvature of γ satisfies the differential equation

(κ ′)2 = − f f̈

ḟ 2
(κ2 − ḟ 2)2, (10)

whose solutions are those given in (9). �
Observe that Eq. (10) implies f̈ (t) < 0, in order to avoid κ2 = 0.

Example 3 In Example (2), we make the following changes. We take a curve β with curvature
κβ(s) = a tanh(s

√
1 − a2), where 0 < a < 1. We consider M̄ = R× f M with f : I −→ R a

positive function admitting a point t ∈ I such that ḟ (t) = a, f̈ (t) < 0 and f (t) f̈ (t) = a2−1.
Then, the curve γt is in the hypothesis of Theorem 3.

Corollary 3 Let M̄ = I × f M3(c) be a Robertson–Walker 4-spacetime. Choose a point
t ∈ I such that ḟ (t) �= 0 and γt ∈ Γt a Frenet curve of order 3 such that γ is a curve in
M3(c) with vanishing torsion. Then, γt is a critical point of L if and only if f̈ (t) < 0, the
curvature κ of γ satisfies (9) and c = − ḟ (t)2 + f (t) f̈ (t) < 0.

5.2.2 Case τ �= 0

Theorem 4 Assume that t ∈ I is such that ḟ (t) �= 0. Let γt ∈ Γt be a Frenet curve of order
3 such that the associated curve γ in M satisfies κτ �= 0. Let us suppose that RN T T N = c
and RN T T B = d along γ , for suitable constants c, d ∈ R. Then, γt is a critical point of L if
and only if the following statements hold:

1. f̈ (t) �= 0.
2. RN T T B = d = 0 and RN T T N = c = f (t) f̈ (t) − ḟ 2(t).
3. The curvature κ and torsion τ are given by

κ(s)2 = ḟ (t)2 e2A + C2 tan2 (C s + B)

e2A − C2 ,

τ (s) = eA C2 sec2 (C s + B)

e2A + C2 tan2 (C s + B)
,

(11)

or

κ(s)2 = ḟ (t)2 e2A + C2 tan h2 (C s + B)

e2A + C2 ,

τ (s) = −eA C2 sec h2 (C s + B)

e2A + C2 tan h2 (C s + B)
,

(12)
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according to f̈ (t) > 0 or f̈ (t) < 0, respectively, where A, B, C ∈ R and A and C satisfy

e2A − f (t) f̈ (t) > 0, C =
√

| f (t) f̈ (t)|.
Proof Since κ3 = 0, Eq. (8) lead to κ ′ �= 0 and

κ ′′ = κτ 2 + 2
(κ ′)2

κ
+ κ ′τ ′

τ
. (13)

Also, the Euler–Lagrange equation (4) becomes

ε2 κ R(N , T )T + ε2κ ḟ 2 N + ε2 f 2 ḟ f̈ ∂t

f 2�
= ε2ε3 f κ2

2 E2 − ε3κ
′
2 E3.

The nontrivial components with respect to the Frenet frame of γ t are

ε3κ
2
2 = κ2(RN T T N + ḟ 2) − f ḟ 2 f̈

f 2�2 ,

−κ ′
2 = ε3κ(κτ RN T T B�2 − ε2 ḟ 2κ ′(RN T T N + ḟ 2 − f f̈ ))

f �2Θ
,

0 = −RN T T Bκ ′ + κτ(RN T T N + ḟ 2 − f f̈ ).

By inserting the expressions of � and Θ in these equations, we have

0 = κ4(RN T T N − τ 2 + ḟ 2) + ḟ 2(κ ′)2 + f ḟ 4 f̈

−κ2 ḟ 2(RN T T N − τ 2 + ḟ 2 + f f̈ ), (14)

0 = κ2τ(κ2 − ḟ 2)2(RN T T B + τ ′) − ḟ 2(κ2 − ḟ 2)κ ′κ ′′

−κ3 ḟ 2κ ′(RN T T N + τ 2 + ḟ 2 − f f̈ ) + κ ḟ 2κ ′(2(κ ′)2

+ ḟ 2(RN T T N + τ 2 + ḟ 2 − f f̈ )), (15)

0 = −RN T T Bκ ′ + κτ(RN T T N + ḟ 2 − f f̈ ). (16)

Now, we assume that there exists two real constants c, d such that, along the curve
γ , the curvature tensor satisfies RN T T N = c and RN T T B = d . Equation (16) becomes
dκ ′ = κτ(c + ḟ 2 − f f̈ ). In case d �= 0, we call H = c + ḟ 2 − f f̈ and we take the
derivative, getting κ ′′ = (κτ)′ H/d . This readily implies κ ′′ = κ ′( κ ′

κ
+ τ ′

τ
), which is inserted

in (13). As a consequence,

0 = κτ 2 + (κ ′)2

κ
,

contradiction. Therefore, d has to be zero. According to (16), we have c = f (t) f̈ (t)− ḟ (t)2.
By using all this information in Eqs. (14), (15), we obtain

(κ ′)2 = (κ2 − ḟ 2)

ḟ 2

(
κ2τ 2 − f f̈ (κ2 − ḟ 2)

)
, (17)

0 = 2 ḟ 2(κ ′)3κ + (κ2 − ḟ 2)(− ḟ 2τ 2κκ ′ + κ2ττ ′(κ2 − ḟ 2) − ḟ 2κ ′κ ′′). (18)

We insert (13) in (18), deducing Θ2(κ3τ ′ − ḟ 2(2τκ ′ + κτ ′)) = 0. As κ2 �= 0, we know

Θ �= 0 and therefore we get τ ′ = 2ε2τ ḟ 2κ ′
κ�2 whose solution is

τ = eA ε2�
2

κ2 , (19)
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where A ∈ R is an integration constant. We insert this in (17), so that

(κ ′)2 = �4

κ2 ḟ 2

(
κ2(e2A − f f̈ ) − e2A ḟ 2

)
.

We must take A such that e2A − f (t) f̈ (t) > 0, otherwise the above equation has no
solution. Now, by the change of variable u = κ2, we deduce

(u′)2 = 4
(u − ḟ 2)2

ḟ 2

(
(e2A − f f̈ )u − e2A ḟ 2

)
.

We put C =
√

| f (t) f̈ (t)|. We have three cases. The case f̈ (t) > 0 leads to solution (11) and
f̈ (t) < 0 implies solution (12). Finally, we obtain for f̈ (t) = 0,

u(s) = κ(s)2 = ḟ (t)2
(

1 + 1

(eAs + B)2

)
, τ (s) = eA

1 + (eAs + B)2 ,

for a suitable integration constant B ∈ R. In this cases ε2 = 1 and a straightforward compu-
tation shows κ2 = 0. Then, we have to discard this case. �
Corollary 4 Let M̄ = I × f M3(c) be a Robertson–Walker 4-spacetime. Choose a point
t ∈ I such that ḟ (t) f̈ (t) �= 0. Let γt ∈ Γt be a Frenet curve of order 3 such that the
associated curve γ in M3(c) satisfies κτ �= 0. Then, γt is a critical point of L if and only if
c = f (t) f̈ (t)− ḟ 2(t) and the curvature κ and torsion τ are given by (11) or (12), according
to f̈ (t) > 0 or f̈ (t) < 0, respectively.

Example 4 Take the open subset R ×et R
3 of the de Sitter spacetime, and a curve γ (s) in

R
3 with curvature and torsion given by Eq. (11). The curve γt = (t, γ ) ∈ Γt satisfies the

conditions of the corollary for any t ∈ R.

5.3 Frenet curves of order 4. κ1κ2κ3 �= 0

5.3.1 Case κ > 0 is constant

Theorem 5 Assume that t ∈ I is such that ḟ (t) �= 0. Let γt ∈ �t be a Frenet curve of order
4 such that the curvature of the associated γ is constant. Then, γt is a critical point of L if
and only if the following equations hold

f̈ (t) = 0, RN T T N = τ 2 − ḟ (t)2, RN T T B = −τ ′.

Proof In this case, since κ3 �= 0, by (8) we have τ �= 0. We define δ = sign(τ ). Now, the
Frenet apparatus becomes

E1 = 1

f
T, E2 = ε2κ N + ε2 f ḟ ∂t

f �
, E3 = δε2

f
B,

E4 = δε2 ḟ N + δε2κ f ∂t

f �
, κ1 = �

f
, κ2 = δκ τ

f �
, κ3 = −τ ḟ

f �
.

(20)

Note that ε3 = 1, then ε4 = −ε2. Also, for κ2 to be positive and κ3 �= 0, it is necessary
τ �= 0. The curvature is

R̄(E2, E1)E1 = ε2 κ R(N , T )T + ε2κ ḟ 2 N + ε2 f 2 ḟ f̈ ∂t

f 3�
. (21)
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By using (20) and (21), the Euler–Lagrange equation (4) becomes

ε2 κ R(N , T )T + ε2κ ḟ 2 N + ε2 f 2 ḟ f̈ ∂t

f 2�
= ε2κ τ 2

f 2�
N − ε2κ τ ′

f 2�
B.

Taking components, we have

f̈ = 0, R(N , T )T = (τ 2 − ḟ 2)N − τ ′ B.

�
Corollary 5 Let M̄ = I × f M3(c) be a Robertson–Walker 4-spacetime. Choose a point
t ∈ I such that ḟ (t) �= 0. Let γt ∈ Γt be a Frenet curve of order 4 such that γ is a curve
with κ and τ constant and τ �= 0. Then, γt is a critical point of L if and only if f̈ (t) = 0 and
c = τ 2 − ḟ (t)2.

Note that, in particular, the helices in M3(c) with constant curvature provide a wide family
of examples.

5.3.2 Case κ is not a constant

We should point out that Eq. (21) still holds. So the Euler–Lagrange equation becomes

ε2 κ R(N , T )T + ε2κ ḟ 2 N + ε2 f 2 ḟ f̈ ∂t

f 2�
= ε2ε3κ

2
2 E2 − ε3κ

′
2 E3 − ε3ε4κ2κ3 E4.

Now, by taking components with respect to the Frenet frame of γt , we obtain

0 = ε2�
2 (

κ2(RN T T N − τ 2 + ḟ 2) − f ḟ 2 f̈
) + ḟ 2(κ ′)2,

0 = κ ḟ 2κ ′(RN T T N ḟ 2 + ḟ 4 + 2(κ ′)2 + ḟ 2τ 2 − f ḟ 2 f̈ )

−κ3 ḟ 2κ ′(RN T T N + ḟ 2 + τ 2 − f f̈ ) − ε2 ḟ 2�2κ ′κ ′′ + τκ2�4(RN T T B + τ ′),
0 = κ2τ(RN T T N − τ 2 + ḟ 2 − f f̈ ) + κ(τκ ′′ − κ ′(RN T T B + τ ′)) − 2τ(κ ′)2. (22)

Thus, we obtain the following general result.

Proposition 1 Assume t ∈ I such that ḟ (t) �= 0. Let γt ∈ Γt be a Frenet curve of order 4
such that the curvature of the associated curve γ satisfies κ ′ �= 0. Then, γt is a critical point
of the action functional L if and only if Eq. (22) hold.

As in previous cases, if we assume that the curvature tensor along γ satisfies RN T T N = c
and RN T T B = d for some constants c, d ∈ R, the following theorem shows that there do not
exist critical points of order 4 of the action functional.

Theorem 6 Let us suppose ḟ (t) �= 0. Then, there do not exist Frenet curves γt ∈ Γt of order
4, which are critical points of L such that

1. The associated curve γ satisfies κ ′ �= 0.
2. The curvature tensor along γ is of the form RN T T B = d, RN T T N = c for any constants

c, d ∈ R.

Proof We will assume the existence of a curve as in the statement of the theorem and infer
a contradiction.
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Since κ1κ2κ3 �= 0, we have κτ �= 0. Now, by manipulating the three equations (22), we
have

(κ ′)2 = −ε2�
2

ḟ 2

(
κ2(c − τ 2 + ḟ 2) − f ḟ 2 f̈

)
, (23)

κ ′κ ′′ = ε2κ

ḟ 2�2

(
κτ�4(d + τ ′) + ḟ 2κ ′ ( ḟ 4 + 2(κ ′)2 + ḟ 2(c + τ 2 − f f̈ )

)

−κ2 ḟ 2κ ′(c + ḟ 2 + τ 2 − f f̈ )
)
, (24)

κ ′′ = 2(κ ′)2

κ
+ κ ′(d + τ ′)

τ
+ κ(τ 2 − c − ḟ 2 + f f̈ ). (25)

We differentiate Eq. (23) and subtract it to two times Eq. (24). Bearing in mind (23), after
some computations, we deduce

dκ3τ − dκτ ḟ 2 − 2 ḟ 2κ ′(c + ḟ 2 − f f̈ ) = 0. (26)

Firstly, let us suppose that d �= 0. From the previous equation, we get

τ = 2ε2 ḟ 2 Hκ ′

dκ�2 , where H = c + ḟ 2 − f f̈ . (27)

From κ ′ �= 0 and τ �= 0, we have H �= 0. We insert (27) in (25). There is no loss of
generality if we take κ satisfying d2(κ4 − ḟ 4) − 4 ḟ 4 H2 �= 0. Therefore,

(κ ′)2 = d2κ2�4(ε2d2�2 − 2 ḟ 2 H2)

2H ḟ 2(d2(κ4 − ḟ 4) − 4 ḟ 4 H2)
. (28)

Next, we insert (27) in (23). Again, there is no loss of generality if we also assume that κ

satisfies 4 ḟ 2 H2 − d2(κ2 − ḟ 2) �= 0. Then, we get

(κ ′)2 = d2�4(Hκ2 + ε2 f f̈ �2)

4 ḟ 4 H2 − ε2d2 ḟ 2�2
. (29)

By (28) and (29), one has

d2κ2�4(ε2d2�2 − 2 ḟ 2 H2)

2H ḟ 2(d2(κ4 − ḟ 4) − 4 ḟ 4 H2)
= d2�4(Hκ2 + ε2 f f̈ �2)

4 ḟ 4 H2 − ε2d2 ḟ 2�2
,

which is equivalent to

0 = −2H(d2 + 4H2) f ḟ 4 f̈ − d2(d2 + 4H2) ḟ 2κ2 + d2(d2 + 2H2 + 2H f f̈ )κ4.

By hypothesis, κ is not constant, so all coefficients of the previous polynomial have to
vanish. This implies d = H = 0, contradiction.

Thus, we have d = 0. Equation (26) becomes c + ḟ 2 − f f̈ = 0, which means κ3 ≡ 0.
This way, we have to discard this case. �

Corollary 6 Given M̄ = I × f M3(c) a Robertson–Walker spacetime, assume that t ∈ I
is such that ḟ (t) �= 0. Then, there do not exist Frenet curves γt ∈ Γt of order 4, which are
critical points of L and such that its corresponding curve γ satisfies κ ′ �= 0.
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