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Abstract

We show that there is a correspondence between totally umbilic null
hypersurfaces in generalized Robertson-Walker spaces and twisted decom-
positions of the fibre. This allows us to prove that nullcones are the unique
totally umbilic null hypersurfaces in the closed Friedmann Cosmological
model. We also apply this kind of ideas to static spaces, in particular to
Reissner-Nordström and Schwarzschild exterior spacetimes.
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1 Introduction

A hypersurface in a Lorentzian manifold is null if the induced metric tensor is
degenerate on it. There is an increasing interest on these hypersurfaces both
from a physical and a geometrical point of view. Black hole horizons are one
of the most remarkable examples [2, 5]. On the other hand, nullcones play a
central role in causality theory and its regularity is of key importance in the
propagation properties of linear and nonlinear waves, [8]. Specific techniques
are needed to study these hypersurfaces since it is not possible to define an
orthogonal projection over them, so neither the induced connection nor the
second fundamental form can be defined in the usual way.

∗The first author was supported in part by MEYC-FEDER Grant MTM2013-41768-P. This
paper was supported in part by Grupo Junta de Andalućıa FQM-324.
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In this paper, we focus on geometrical properties of null hypersurfaces in a
generalized Robertson-Walker space. The main result is Theorem 4.2, where we
show that a totally umbilic null hypersurface gives rise to a local decomposition
of the fibre as a twisted product and viceversa, providing a deep insight of
twisted decompositions in Lorentzian geometry. For example, not all manifold
admits such a decomposition [7, 10], hence there are spacetimes that do not
admit totally umbilic null hypersurfaces. Moreover, given a totally umbilic null
hypersurface, we can construct a dual one, considering the same induced twisted
decomposition in the fibre but reversing the base. In particular, totally umbilic
null hypersurfaces through each point in generalized Robertson-Walker spaces
appear in pairs. Surprisingly, there are cases in which the dual construction is
not trivial, see Example 4.6.

One of the most important examples of null hypersurfaces are nullcones, so
we dedicate Section 3 to study them. We show that nullcones in Robertson-
Walker spaces are totally umbilic. Nullcones with this property in general-
ized Robertson-Walker spaces have special importance because if there is a null
geodesic starting at the vertex of a totally umbilic nullcone and it has a conjugate
point along it, its multiplicity is maximum, Proposition 3.6. This is potentially
interesting in Cosmology and extends a previous result for Robertson-Walker
spaces, [3]. We also give necessary and sufficient conditions for a null hypersur-
face to be an open set of a nullcone, which, jointly with Theorem 4.2, allows us
to show in Section 4 that any totally umbilic null hypersurface in a Robertson-
Walker space I×f Sn−1 with

∫
I

1
f > π is an open set of a nullcone, Theorem 4.11.

As a corollary, we can apply this theorem to the closed Friedmann Cosmological
model.

Finally, in Section 5, we adapt Theorem 4.2 to the case of standard static
spaces and we apply it to an important family of static spacetimes. We prove a
uniqueness result for dual pairs of totally umbilic null hypersurfaces in Reissner-
Nordström and De Sitter-Schwarzschild spacetimes.

2 Preliminaries

Take I an open interval of R, f ∈ C∞(I) a positive function and (F, gF ) a
Riemannian manifold. The manifold I×F furnished with the Lorentzian metric
g = −dt2 + f(t)2gF is called a generalized Robertson-Walker (GRW) space and
is denoted by I ×f F . When F has constant curvature, it is called a Robertson-
Walker (RW) space and if f ≡ 1, then it is simply denoted by I × F . The
vector field ζ = f∂t is timelike, closed and conformal. It locally characterizes
these spaces and, under certain conditions, it is the unique vector field with
these properties, [6]. If we consider the same construction as above, but with
dt2 instead of −dt2, the resulting product metric is called warped product and
if we consider a positive function f ∈ C∞(I × F ) instead of f ∈ C∞(I), then it
is called a twisted product.

Given L a null hypersurface in a GRW space, we take the unique null vector
field ξ ∈ X(L) such that g(ζ, ξ) = 1 and we call S the distribution in L given
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by ζ⊥ ∩ TL.
The vector field ξ is geodesic and ∇Xξ is a section of TL for all X ∈ S. In

fact, ∇Xξ ∈ S, since g(∇Xξ, ζ) = −g(ξ,∇Xζ) = 0. The null second fundamen-
tal form of L is defined by B(X,Y ) = −g(∇Xξ, Y ) for all X,Y ∈ S. It is said
that it is totally geodesic if B ≡ 0 and totally umbilic if B = ρg for certain
ρ ∈ C∞(L). The trace of B is the null mean curvature of L, explicitly given by

Hp =

n∑
i=3

B(ei, ei),

being {e3, . . . , en} an orthonormal basis of Sp.
If L is totally umbilic, then the null sectional curvature respect to ξ of a null

plane Π = span(X, ξ), where X ∈ S is unitary, can be expressed as

Kξ(Π) = ξ(ρ)− ρ2. (1)

If it is totally geodesic, we have Kξ(Π) = 0 for any null tangent plane Π to
L.

If θ is an open subset of F and h : θ → I is a function, then the graph of h
is a null hypersurface of I ×f F if and only if∣∣∇Fh∣∣

F
= f ◦ h. (2)

Locally, any null hypersurface L can be expressed in this way. If we call
π : I ×f F → F and T : I ×f F → I the canonical projections, then π : L→ F
is a local diffeomorphism and thus, locally, L coincides with the graph of the
function given by h = T ◦ π−1 : θ → I, where θ ⊂ F . Moreover, given v ∈ TF
we have

gF (∇F∇Fh∇
Fh, v) =

1

2
v
(
(f ◦ h)2

)
= (f ◦ h)( f ′ ◦ h)gF (v,∇Fh),

therefore
∇F∇Fh∇

Fh = (f ◦ h)( f ′ ◦ h)∇Fh. (3)

3 Nullcones in generalized Robertson-Walker spaces

If M is a Lorentzian manifold and Θ a normal neighborhood of a point p ∈M ,
then we call Θ̂ = exp−1p (Θ) and P̂ the position vector field in TpM . The local

position vector field at p is defined as Pexpp(v)
= (expp)∗v (P̂v) for all v ∈ Θ̂ and

the local future and past nullcones at p as

C+
p = expp

(
Ĉ+
p ∩ Θ̂

)
, C−p = expp

(
Ĉ−p ∩ Θ̂

)
,

being Ĉ+
p , Ĉ−p the future and past nullcone respectively in TpM . In a GRW

space, local nullcones can be characterized as follows.
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Proposition 3.1. Let I ×f F be a GRW space and fix p∗ = (t∗, x∗) ∈ I ×F . If
Θ is a normal neighborhood of p∗, then the local nullcones at p∗ are given by

C+
p∗ = {(t, x) ∈ Θ :

∫ t

t∗

1

f(r)
dr = dF (x∗, x)},

C−p∗ = {(t, x) ∈ Θ :

∫ t∗

t

1

f(r)
dr = dF (x∗, x)},

being dF the Riemannian distance in F . Moreover, the local position vector field
at p∗ is given by

P(t,x) =

∫ t

t∗

f(r)

f(t)
dr ∂t +

∫ t
t∗

f(r)
f(t) dr∫ t

t∗

f(t)
f(r)dr

PFx ,

for all (t, x) ∈ C+
p∗ ∪C

−
p∗ , where PF is the local position vector field at x∗ in F .

Proof. Given (t, x) ∈ C+
p∗ , it exists a null geodesic γ : J → C+

p∗ such that
γ(0) = p∗, g(γ′(0), ζp∗) = −1 and γ(s∗) = (t, x) for certain s∗ ∈ J . Since ζ is
closed and conformal, g(γ′, ζ) is constant and therefore, if γ(s) = (α(s), β(s)),
we have α′(s)f(α(s)) = 1. Hence α(s) = a−1(s), being a(s) =

∫ s
t∗
f(r)dr. On

the other hand, β is a pregeodesic in F which holds

β′′(s) = −2
d

ds

(
ln f(α(s))

)
β′(s),

so β is given by
β(s) = expFx∗ (b(s)u) ,

where b(s) =
∫ s
0

1
f(α(r))2 dr and u ∈ Tx∗F with gF (u, u) = 1. Therefore,

dF (x∗, x) = b(s∗) =

∫ t

t∗

1

f(r)
dr.

Conversely, take (t, x) ∈ Θ such that dF (x∗, x) =
∫ t
t∗

1
f(r)dr. If we call

a(s) =

∫ t

t∗

f(r)dr, b(s) =

∫ s

0

1

f(a−1(r))2
dr,

s∗ = a(t), α(s) = a−1(s) and β(s) = expFx∗(b(s)u) where u ∈ Tx∗F is such
that expFx∗ (dF (x∗, x)u) = x, then it is easy to show that γ(s) = (α(s), β(s))
is a future null geodesic in M with γ(0) = p∗ and γ(s∗) = (t, x). Therefore,
(t, x) ∈ C+

p∗ .
To compute the local position vector field over C+

p∗ we observe that for any
manifold and any geodesic γ with γ(0) = p∗, the local position vector field
is given by Pγ(s) = sγ′(s). In our particular case, P(t,x) = s∗γ′(s∗). Since
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α(s∗) = t, we have

s∗ =

∫ t

t∗

f(r)dr,

α′(s∗) =
1

f(t)
,

β′(s∗) = b′(s∗)
(
expFx∗

)
∗b(s∗)u

(
u
)

=
b′(s∗)

b(s∗)
PFx ,

where PF is the local position vector field at x∗ in F . Since b(s∗) =
∫ t
t∗

1
f(r)dr

and b′(s∗) = 1
f(t)2 , we have

P(t,x) =

∫ t

t∗

f(r)

f(t)
dr ∂t +

∫ t
t∗

f(r)
f(t) dr∫ t

t∗

f(t)
f(r)dr

PFx .

The following lemma will be helpful to compute the null second fundamental
form of a nullcone in a Robertson-Walker space.

Lemma 3.2. Let (F, gF ) be a semi-Riemannian manifold, fix x∗ ∈ F and take
θ ⊂ F a normal neighborhood of x∗. Call PF ∈ X(θ) the local position vector
field at x∗. If w ∈ TxF , being x = expFx∗(v) ∈ θ, then

gF (∇FwPF , w) =
1

2

d

ds
g(J, J)|s=1,

where J is the unique Jacobi vector field over expFx∗(sv) with J(0) = 0 and
J(1) = w.

Proposition 3.3. Local nullcones in a Robertson-Walker space are totally um-
bilic.

Proof. Fix p∗ = (t∗, x∗) ∈ I ×f F and consider p = (t, x) ∈ C+
p∗ . From Proposi-

tion 3.1, ξ(t,x) = −1∫ t
t∗
f(r)dr

P(t,x). If w ∈ S(t,x), then g(w, ∂t) = 0 and so w ∈ TxF

with g(PFx , w) = 0. Therefore,

∇wξ =
−1∫ t

t∗
f(r)dr

∇wP = − f
′(t)

f(t)2
w − 1

f(t)2
∫ t
t∗

1
f(r)dr

∇wPF .

Now, we use Lemma 3.2 and that F has constant curvature k to compute
gF (∇FwPF , w). Take u ∈ Tx∗F such that expFx∗(dF (x, x∗)u) = x. The Jacobi
vector field over expFx∗(s dF (x, x∗)u), 0 ≤ s ≤ 1, with J(0) = 0 and J(1) = w is
given by J(s) = ϕ(s)W (s), where W is parallel with W (1) = w and

ϕ(s) =


Sin(

√
kdF (x,x∗)s)

Sin(
√
kdF (x,x∗))

if k > 0,

s if k = 0,
Sinh(

√
−kdF (x,x∗)s)

Sinh(
√
−kdF (x,x∗))

if k < 0.
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Therefore, since dF (x, x∗) =
∫ t
t∗

1
f(r)dr, we have

B(w,w) =



1
f(t)2

(
f ′(t) +

√
k

Tan(
√
k
∫ t
t∗

1
f(r)

dr)

)
g(w,w) if k > 0,

1
f(t)2

(
f ′(t) + 1∫ t

t∗
1

f(r)
dr

)
g(w,w) if k = 0,

1
f(t)2

(
f ′(t) +

√
−k

Tanh(
√
−k

∫ t
t∗

1
f(r)

dr)

)
g(w,w) if k < 0.

Remark 3.4. In view of the null second fundamental form of nullcones in
Robertson-Walker spaces, it follows that they can not be totally geodesic, since
the null mean curvature tends to infinity as the coordinate t approaches to t∗.
This is a general fact in any Lorentzian manifold (see for example Proposition
2.1 in [11]).

Example 3.5. Since Rn1 , Sn1 and a suitable portion of Hn1 can be expressed as
a RW space (see the first column of Table 1), the above proposition shows the
well-known fact that nullcones of a Lorentzian manifolds of constant curvature
are totally umbilic.

Proposition 3.6. Let γ be a null geodesic in a GRW space. If γ is contained
in a totally umbilic nullcone L, and J is a Jacobi vector field with J ∈ S, then
it holds

J ′′ +
Ric(γ′, γ′)

n− 2
J = 0.

In particular, if there exists a conjugate point of γ(0) along γ, it has maxi-
mum multiplicity.

Proof. Using that L is totally umbilic, we have ∇Xξ = −ρX for all X ∈ S.
Since ξ is geodesic, after a suitable affine reparametrization, γ is an integral
curve of ξ, thus

RJγ′γ
′ = RJξξ =

(
ξ(ρ)− ρ2

)
J.

Using Equation (1), we get the result. Finally observe that the Jacobi oper-
ator is proportional to the identity, so if there exists a conjugate point, then it
has maximum multiplicity.

This proposition is potentially interesting in Cosmology because the multi-
plicity in gravitational lens phenomena can be detected by astronomical observa-
tions. On the other hand, after Proposition 3.3, conjugate points in Robertson-
Walker spaces have maximum multiplicity, see also [3].

We finish this section with a criterion to determine whenever a null hyper-
surface given by the graph of a function is contained in a nullcone.

Lemma 3.7. Let I ×f F be a GRW space and p∗ = (t∗, x∗) a fixed point. Let
θ ⊂ F with x∗ in the clausure of θ and h : θ → I a function. If the graph of h is
a null hypersurface, then it is contained in the local nullcone at p∗ if and only
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if limx→x∗ h(x) = t∗ and ∇Fh is proportional to PF , the local position vector
field at x∗ in F .

Proof. Take a null geodesic γ such that γ(0) = p∗ and γ(s) = (α(s), β(s)). We
have

gF
(
∇Fh, β′(s)

)
= (h ◦ β)′(s),∣∣∇Fh∣∣

F
|β′(s)|F = |α′(s)| .

Using the Cauchy-Schwarz inequality and that locally C±p∗ = expp∗(Ĉ
±
p∗),

the graph of h is contained in the nullcone at p∗ if and only if ∇Fh and β′

are proportional and limx→x∗ h(x) = t∗, but observe that β′ is proportional to
PF .

Remark 3.8. If L is a null hypersurface in a GRW space given by the graph
of a function h and p∗ ∈ L, then for any null geodesic γ(s) = (α(s), β(s)) with
γ(0) = p∗ we have h(β(s)) ≤ α(s) and the equality holds if and only if γ belongs
to L. This implies that, near p∗, it holds L ⊂ I+(p∗)

c. Geometrically, this
means that the local nullcone at p∗ is an extremal null hypersurface near p∗.
This result is also true for any arbitrary Lorentzian manifold. Indeed, given a
point p∗ ∈ L consider Θ a normal neighborhood of p∗ and suppose there exists a
point q ∈ L ∩ I+(p∗,Θ). Take a timelike plane Π ⊂ Tp∗M with 0, q̂ ∈ Π, where
q̂ = exp−1p∗ (q). The intersection L ∩ expp∗(Π) is the trace of a curve from p∗ to
q which is null or spacelike in each of its points and is contained in the timelike
surface expp∗(Π), but q ∈ I+(p∗, expp∗(Π)), which is a contradiction. Using a
past nullcone sharing a null geodesic of L, with vertex near p∗, we can figure
out the situation as L being a sheet between two millstones.

4 Umbilic null hypersurfaces

In this section we prove the main result of this paper. It gives us a correspon-
dence between totally umbilic null hypersurfaces and twisted decompositions of
the fibre of a GRW space. Thus, it shows that only special types of GRW spaces
can admit totally umbilic null hypersurfaces and it also provides a method to
construct them. First, we need the following lemma.

Lemma 4.1. Let I ×f F be a GRW space and L a null hypersurface given by
the graph of a function h. Then

ξ = − 1

f ◦ h
∂t −

1

(f ◦ h)
3∇

Fh, (4)

S ' {X ∈ TF : gF (X,∇Fh) = 0} and the null second fundamental form is
given by

B(X,Y ) =
f ′ ◦ h

(f ◦ h)
2 g(X,Y ) +

1

f ◦ h
HessFh (X,Y ),

for all X,Y ∈ S.
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Theorem 4.2. Let I ×f F be a GRW space. If L is a totally umbilic null
hypersurface, then for each (t0, x0) ∈ L there exists a decomposition of F in a
neighborhood of x0 as a twisted product with one dimensional base(

J × S, ds2 + µ(s, z)2gS
)
,

where x0 is identified with (0, z0) for some z0 ∈ S and L is given by

{(t, s, z) ∈ I × J × S : s =

∫ t

t0

1

f(r)
dr}.

Moreover, if H is the null mean curvature of L, then

µ(s, z) =
f(t0)

f(t)
exp

(∫ s

0

H(t, r, z)f(t)2

n− 2
dr

)
for all (t, s, z) ∈ L.

Conversely, if F admits a twisted decomposition in a neighborhood of x0 as
above, then L = {(t, s, z) ∈ I × J × S : s =

∫ t
t0

1
f(r)dr} is a totally umbilic null

hypersurface with null mean curvature

H =
n− 2

f(t)2

(
f ′(t) +

µs(s, z)

µ(s, z)

)
.

Proof. Suppose that L is given by the graph of certain map h : θ → I in a
neighborhood of (t0, x0) and B = ρg. From Formula (3) and Lemma 4.1 it
holds

∇F∇Fh∇
Fh = (f ◦ h)(f ′ ◦ h)∇Fh,

∇Fv ∇Fh =
(
ρ(f ◦ h)3 − (f ◦ h)(f ′ ◦ h)

)
v

for all v ⊥ ∇Fh. Since
∣∣∇Fh∣∣

F
= f ◦ h, we have that

∣∣∇Fh∣∣
F

is constant

through the level hypersurfaces of h. Thus, if we call E = 1
|∇Fh|F

∇Fh, it is

easy to show that

∇FEE = 0,

∇Fv E =
(
ρ (f ◦ h)

2 − (f ′ ◦ h)
)
v

for all v ⊥ ∇Fh. From these equations it follows that E is closed and

(LEgF ) (v, w) = 2
(
ρ (f ◦ h)

2 − (f ′ ◦ h)
)
gF (v, w) (5)

for all v, w ∈ TF with v, w ⊥ ∇Fh.
The following argument is local, so for simplicity we can suppose without

loss of generality that E is complete. Call Sz the leaf of E⊥ through z ∈ F .
Being E closed, the flow φ of E is foliated, that is, φs(Sz) = Sφs(z) for all z ∈ L
and s ∈ R. Using this, it is easy to check that φ : R × Sx0

→ F is onto and
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a local diffeomorphism. Moreover, from Equation (5), φs : Sx0 → Sφs(x0) is a
conformal diffeomorphism with conformal factor

exp

(
2

∫ s

0

(
ρ(φr(z))f(h(φr(z)))

2 − f ′(h(φr(z)))
)
dr

)
and it follows that φ∗(gF ) = ds2 + µ2g|Sx0 , being

µ(s, z) = exp

(∫ s

0

(
ρ(φr(z))f(h(φr(z)))

2 − f ′(h(φr(z)))
)
dr

)
.

Since E is identified with ∂s, in this decomposition h only depends on s
and h′(s) > 0. Thus, from Equation (2) we have that h(s) = c−1(s) being

c(t) =
∫ t
t0

1
f(r)dr. Moreover, (ln f ◦ h)

′
= f ′ ◦ h, so the above expression for µ

can be written as

µ(s, z) =
f(t0)

f(h(s))
exp

(∫ s

0

ρ(φr(z))f(h(r))2dr

)
.

For the converse, Equation (2) can be directly checked and applying Lemma
4.1 we get the result.

Observe that µ(0, z) = 1 for all z ∈ S. Moreover, this theorem can be
applied to any null surface in a three dimensional GRW space, since they are
always totally umbilic.

Example 4.3. Totally geodesic null hypersurfaces in Rn1 are given by null hy-
perplanes. In Sn1 and Hn1 we can obtain totally geodesic null hypersurfaces inter-
secting them with null planes through the origin of Rn+1

1 and Rn+1
2 respectively.

Table 1 shows how Theorem 4.2 is fulfilled in these particular cases. In this
table we call A(s) = 2 arg tanh

(
tan

(
s
2

))
, B(s) = 2 arg tan

(
tanh

(
s
2

))
and H the

portion of Hn1 given by
(
−π2 ,

π
2

)
×cos(t) Hn−1.

Table 1: Totally geodesic null hypersurfaces in space forms.

Space form Fibre Tot. geod. null hypersurface

Rn1 = R× Rn−1 R× Rn−2
{

(s, s, z) ∈ R× R× Rn−2
}

Sn1 = R×cosh(t) Sn−1
(
−π2 ,

π
2

)
×cos(s) Sn−2

{
(A(s), s, z) ∈ R×

(
−π2 ,

π
2

)
× Sn−2

}
H R×cosh(s) Hn−2

{
(B(s), s, z) ∈

(
−π2 ,

π
2

)
× R×Hn−2

}
Example 4.4. From Proposition 3.3 and Theorem 4.2, nullcones in a Robertson-
Walker space induce a twisted decomposition of the fibre. Indeed. Consider, for
example, M = I×f Sn and fix (t0, x0) ∈ C+

(t∗,x∗)
. If we call δ = dSn(x∗, x0), then

from Proposition 3.1 we have
∫ t0
t∗

1
f(r)dr = δ. Take the local decomposition of
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Sn given by (0, π)×sin(u) Sn−1, where dSn(x∗, x) = u. In this decomposition, the
point x0 is identified with (δ, z0) for some z0 ∈ Sn−1. Thus, if we call s = u− δ
we get the decomposition (−δ, π − δ)×sin(s+δ) Sn−1, where x0 is identified with

(0, z0) and C+
(t∗,x∗)

is given by

{(t, s, z) ∈ I × (−δ, π − δ)× Sn−1 :

∫ t

t0

1

f(r)
dr = s}

as Theorem 4.2 asserts.
Analogously, nullcones in I ×f Rn induce the decomposition of Rn given by

(−δ,∞) ×s+δ Sn−1, whereas nullcones in I ×f Hn induce the decomposition of
Hn given by (−δ,∞)×sinh(s+δ) Sn−1.

Given a totally umbilic null hypersurface L, we can construct another one,
which we call dual of L, simply by changing the sign of the parameter in the
base of the twisted decomposition of the fibre induced by L.

Corollary 4.5. Let I ×f F be a GRW space and L a totally umbilic null hy-
persurface. For each (t0, x0) ∈ L we can construct another totally umbilic null

hypersurface L̃(t0,x0), which we call dual of L through (t0, x0).
Specifically, if L induces a twisted decomposition J ×µ S of F in a neighbor-

hood of x0 where L is {(t, s, z) ∈ I × J × S : s =
∫ t
t0

1
f(r)dr}, then L̃(t0,x0) is

given by

{(t, s, z) ∈ I × J × S : s =

∫ t0

t

1

f(r)
dr}

and its null mean curvature is

H̃ =
n− 2

f(t)2

(
f ′(t)− µs(s, z)

µ(s, z)

)
.

Proof. Suppose J = (−ε, ε) and consider the coordinate change

ψ : I ×f
(
J ×µ(s,z) S

)
→ I ×f

(
J ×µ(−u,z) S

)
given by the isometry ψ(t, s, z) = (t,−s, z). Using Theorem 4.2, in the codomain
of ψ, the twisted decomposition du2 + µ(−u, z)2gS induces the totally umbilic

null hypersurface given by {(t, u, z) ∈ I × J × S : u =
∫ t
t0

1
f(r)dr}. The inverse

image of this hypersurface is L̃(t0,x0) = {(t, s, z) : s =
∫ t0
t

1
f(r)dr}. Its null mean

curvature can be easily computed using Lemma 4.1.

Example 4.6. Consider Rn1 = R × Rn−1 and L = C+
(0,0). Fixed (t0, x0) ∈ L,

from Example 4.4 and the above corollary, the dual hypersurface through (t0, x0)
is given by

{(t, s, z) ∈ R× (−t0,∞)× Sn−2 : s = t0 − t} = C−(2t0,0).

10



Consider now Sn1 = R ×cosh(t) Sn−1 and L = C+
(0,x∗)

. As before, fixed

(t0, x0) ∈ L, L̃(t0,x0) is given by

{(t, s, z) ∈ R× (−δ, π − δ)× Sn−2 : s =

∫ t0

t

1

cosh(r)
dr},

where δ =
∫ t0
0

1
cosh(r)dr and s = dSn−1(x∗, x)− δ. Take tc > 0 such that∫ tc

0

1

cosh(r)
dr =

∫ ∞
tc

1

cosh(r)
dr =

π

4
.

If t0 < tc, then there exists ts such that δ =
∫ ts
t0

1
cosh(r)dr and using Propo-

sition 3.1, it is easy to show that L̃(t0,x0) = C−(ts,x∗).

If tc < t0, using that dSn−1(x∗, x∗) = π, where x∗ is the antipodal of x∗, we

write s = π−dSn−1(x∗, x)− δ. If we take tl such that π− δ =
∫ t0
tl

1
cosh(r)dr, then

it follows that L̃(t0,x0) = C+
(tl,x∗)

.

Finally, suppose that t0 = tc. In this case,

L̃(t0,x0) = {(t, s, z) ∈ R×
(
−π

4
,

3π

4

)
×Sn−2 : s− π

4
= −2 arg tan

(
tanh

(
t

2

))
}.

Reparametrizing the s coordinate, it follows that it is the totally geodesic null
hypersurface given in Table 1.

The above example shows that the dual construction in Minkowski space is a
time reflection, in the sense that the dual of a future nullcone is a past nullcone.
However, in the De Sitter space it is more involved, since the dual of a future
nullcone through a given point on it can be a past nullcone, a totally geodesic
null hypersurface, or even another future nullcone, depending on the situation
of the given point.

As an immediate corollary of Theorem 4.2, we can give the following ob-
struction to the existence of totally umbilic (geodesic) null hypersurfaces.

Corollary 4.7. If the fibre of a GRW space does not admit any local decompo-
sition as a twisted (warped) product with one dimensional base, then it does not
exist any totally umbilic (geodesic) null hypersurface.

If K(Π) 6= 0 for any null plane at a point p in an arbitrary Lorentzian
manifold, then Equation (1) implies that it does not exist any totally geodesic
null hypersurface through p. In a GRW space I×fF , the null sectional curvature
of a null plane Π = span(v, u = −∂t + w), where v, w ∈ TF are unitary and
orthogonal, is given by

Ku(Π) =
KF (span(v, w)) + f ′2 − ff ′′

f2
.

Therefore, this obstruction to the existence of totally geodesic hypersurfaces
involves both the curvature of the fibre and the warping function. However, the

11



obstruction given in Corollary 4.7 is more general because it includes totally
umbilic null hypersurfaces and only depends on the fibre.

Example 4.8. In a Riemannian twisted product manifold J ×µ S, the sectional
curvature of any plane containing ∂s is −1µ Hessµ(∂s, ∂s). Therefore, S2 × S2
does not admit any local twisted product decomposition as above, since for any
vector we can find two planes containing it with different sectional curvatures.
Applying Corollary 4.7, in a GRW space I ×f

(
S2 × S2

)
there are not totally

umbilic null hypersurfaces.

Example 4.9. Consider the twisted product F = R ×µ Rn, where µ(s, z) =
es + |z|2. A curvature analysis as before shows that it does not admit another
local decomposition as a twisted nor warped product with a one dimensional base.
Therefore, from Corollary 4.5, in a GRW space I ×f F there are exactly two
totally umbilic null hypersurface through each point and using Corollary 4.7, it
does not have any totally geodesic null hypersurface.

Theorem 4.2 does not hold for timelike nor spacelike hypersurfaces. Indeed,
in R× S2 × S2 we can find totally geodesic timelike or spacelike hypersurfaces,
although, as it was shown in Example 4.8, S2 × S2 does not admit local de-
compositions as a twisted product. However, it is known that a totally umbilic
timelike hypersurface in a GRW space must be itself a GRW space, [6].

The following lemma gives us another characterization of an open set of a
nullcone near its vertex.

Lemma 4.10. Let I×fF be a GRW space with F complete, take (t0, x0) ∈ I×F
and suppose that F decomposes in a neighborhood of x0 as a twisted product(

(a, b)× S, ds2 + µ(s, z)2gS
)
,

where −∞ < a < 0 < b ≤ ∞ (−∞ ≤ a < 0 < b <∞), S is connected and x0 is
identified with (0, z0) for some z0 ∈ S. The null hypersurface

L = {(t, s, z) ∈ I × (a, b)× S : s =

∫ t

t0

1

f(r)
dr}

is contained in a future (past) local nullcone if and only if

1. lims→a+ µ(s, z) = 0 for all z ∈ S (lims→b− µ(s, z) = 0 for all z ∈ S).

2. It exists t∗ ∈ I with
∫ t∗
t0

1
f(r)dr = a

(∫ t∗
t0

1
f(r)dr = b

)
.

Proof. Suppose that (1) and (2) hold. Since the integral curves of ∂s are unitary
geodesics and F is complete, it exists lims→a+(s, z) for all z ∈ S. Fix z, z′ ∈ S
two distinct points such that there exists σ(r) a unitary geodesic in S with
σ(0) = z and σ(d) = z′. If we call γs(r) = (s, σ(r)), then

dF (γs(0), γs(d)) ≤ length(γs) =

∫ d

0

µ(s, σ(r))dr

12



and so lims→a+dF (γs(0), γs(d)) = 0. Therefore, since S is connected, lims→a+(s, z)
is the same for all z ∈ S, say x∗ ∈ F , and the integral curves of ∂s are radial
geodesic from x∗. Thus, dF (x∗, (s, z)) = s− a and given (t, x) ∈ L we have

dF (x∗, x) =

∫ t

t0

1

f(r)
dr − a =

∫ t

t∗

1

f(r)
dr.

By Proposition 3.1, L is contained in the nullcone C+
(t∗,x∗)

.

The converse is straightforward.

Theorem 4.11. Any totally umbilic null hypersurface in a Robertson-Walker
space I ×f Sn−1 (n > 3) with ∫

I

1

f(r)
dr > π (6)

is an open set of a nullcone. In particular, it cannot exist totally geodesic null
hypersurfaces.

Proof. Let L be a totally umbilic null hypersurface and take (t0, x0) ∈ L. Using
Theorem 4.2, Sn−1 can be decomposed in a neighborhood of x0 as a twisted
product. Since Sn−1 is Einstein, this decomposition is actually a warped product
[4], and it is easy to show that it is(

−π
2
− θ, π

2
− θ
)
×µ Sn−2(| cos(θ)|),

where θ ∈ (−π2 ,
π
2 ), µ(s) = cos(s+θ)

cos(θ) and x0 is identified with (0, z0) for some

z0 ∈ Sn−2.
Using (6), it exists t∗ ∈ I such that

∫ t∗
t0

1
f(r)dr = π

2−θ or
∫ t∗
t0

1
f(r)dr = −π2−θ

and applying the above lemma, L is contained in a lightcone. The last claim
follows from Remark 3.4.

The condition (6) can not be sharpened. For example, in Sn1 = R×cosh(t)Sn−1
there are totally geodesic null hypersurfaces which evidently are not contained
in a nullcone.

We can also get the following immediate corollaries.

Corollary 4.12. Nullcones are the unique totally umbilic null hypersurfaces in
the closed Friedmann Cosmological model.

Corollary 4.13. Any totally umbilic null hypersurface in R× Sn−1 (n > 3) is
contained in a nullcone.

Recall that both, Friedmann models and R × Sn−1, can not possess totally
geodesic null hypersurfaces due to Equation (1) and Lemma 5.2 of [6].

In [1] it is shown that totally umbilic null hypersurfaces in a Lorentzian
manifold of constant curvature are contained in nullcones. The proof is based
on their following claim: in a Lorentzian manifold any totally umbilic null hy-
persurfaces with zero null sectional curvature is contained in a nullcone. But
the example below shows that this is not true in general.
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Example 4.14. Let Q ×r S2 be the Kruskal spacetime, [9]. The hypersurface
Lu0 = {(u, v, x) ∈ Q × S2 : u = u0} is totally umbilic and null. Moreover, if Π
is a null tangent plane to Lu0

, then it is spanned by ∂v and w ∈ TS2, so

K∂v (Π) = −Hessr(∂v, ∂v)
r

= 0,

but Lu0 is not contained in a nullcone.

However, under completeness hypothesis it seems that the above claim is
true. For clarity, we give an alternative proof of the following result using the
technique presented in this paper.

Theorem 4.15. Any totally umbilic null hypersurface in a complete space of
constant curvature and dimension greater than three is totally geodesic or is
contained in a nullcone.

Proof. We can suppose that M is Rn1 , Sn1 or Hn1 .
Suppose first that M = Rn1 = R × Rn−1, and L is a totally umbilic and

non totally geodesic null hypersurface in M . From Theorem 4.2 and [4], it
induces a decomposition of Rn−1 as a warped product, but since L is not totally
geodesic, the only possible decomposition is

(
− 1
θ ,∞

)
×θs+1 Sn−2

(
1
θ

)
for θ > 0

or
(
−∞,− 1

θ

)
×θs+1 Sn−2

(
− 1
θ

)
for θ < 0. Applying Lemma 4.10, L is contained

in a nullcone.
Suppose now that M = Sn1 = R×cosh(t) Sn−1. Without loss of generality, we

can suppose that (0, x0) ∈ L for some x0 ∈ Sn−1. As in the proof of Theorem
4.11, there is a decomposition of Sn−1 as(

−π
2
− θ, π

2
− θ
)
×µ Sn−2(| cos(θ)|),

where θ ∈ (−π2 ,
π
2 ) and µ(s) = cos(s+θ)

cos(θ) . If θ = 0, then L is totally geodesic (see

Table 1). If θ 6= 0, using Lemma 4.10, L is contained in a nullcone.
Finally, we consider M = Hn1 ⊂ Rn+1

2 . Since it does not admit a global
decomposition as a RW space, a little more work must be done in this case. We
can suppose that L intersects an open set of Hn1 isometric to

(
−π2 ,

π
2

)
×cos tHn−1

and (0, x0) ∈ L for some x0 ∈ Hn−1. Applying Theorem 4.2 and [4], there is
a decomposition of Hn−1 as a warped product J ×µ S in a neighborhood of x0
and L is given by

{(2 arg tan
(

tanh
s

2

)
, s, z) : s ∈ J, z ∈ S}.

The decomposition of Hn−1 can be of three different types.

• J × sinh(s+θ)
sinh θ

Sn−2 (| sinh θ|) where J = (−θ,∞) if θ > 0 and J = (−∞,−θ)
if θ < 0. In this case we can apply Lemma 4.10.
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• R× cosh(s+θ)
cosh θ

Hn−2(cosh θ) where θ ∈ R. If θ = 0, then L is totally geodesic

(see Table 1), so we suppose θ 6= 0. The map

Φ :
(
−π

2
,
π

2

)
×cos t

(
R× cosh(s+θ)

cosh θ
Hn−2(cosh θ)

)
→ Rn+1

2

given by

Φ(t, s, z) =

(
cos t sinh(s+ θ),

cos t cosh(s+ θ)

cosh θ
z, sin t

)
is an isometric embedding into Hn1 . If we call t = 2 arg tan

(
tanh s

2

)
, then

it holds cos t cosh s = 1 and sin t = tanh s and it is easy to show that

Φ(L) ={
(sinh θ + cosh θ tanh s, (1 + tanh θ tanh s)z, tanh s) : s ∈ R, z ∈ Hn−2

}
is contained in the nullcone of Hn1 at

(
− 1

sinh θ , 0, . . . , 0,−
1

tanh θ

)
.

• R×es Rn−2. The map

Ψ :
(
−π

2
,
π

2

)
×cos t

(
R×es Rn−2

)
→ Rn+1

2

given by

Ψ(t, s, z)

=

(
es cos t · z,

cos t
(
es
(
1− |z|2

)
− e−s

)
2

,
cos t

(
es
(
1 + |z|2

)
+ e−s

)
2

, sin t

)

is an isometric embedding. As before, we have

Ψ(L)

=

{(
es · z
cosh s

, tanh s− es|z|2

2 cosh s
, 1 +

es|z|2

2 cosh s
, tanh s

)
: s ∈ R, z ∈ Rn−2

}
,

which is contained in the nullcone of Hn1 at (0, . . . , 0,−1, 1,−1).

Example 4.16. Since Hn−1 qualitatively admits different decompositions, we
can show that an analogous result of Corollary 4.13 replacing Sn−1 with Hn−1 is
not true. In fact, from Theorem 4.2 the null hypersurface given by L = {(s, s, z)}
in R ×

(
R×es Rn−2

)
⊂ R × Hn−1 is totally umbilic but it is evidently not

contained in a nullcone.
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5 Standard static spaces

Given I ⊂ R, (F, gF ) a Riemannian manifold and φ ∈ C∞(F ) a positive func-
tion, the manifold F × I furnished with the Lorentzian metric g∗ = gF − φ2dt2
is called a standard static space and is denoted by F ×φ I. Totally umbilic
null hypersurfaces are preserved if we apply a conformal transformation to get a
GRW space with constant warping function. In general, we have the following.

Lemma 5.1. Let (M, g∗) be a Lorentzian manifold with dimM = n, φ ∈
C∞(M) a positive function and g = 1

φ2 g
∗. If L is a null hypersurface in

(M, g∗) and B∗ its null second fundamental form respect to a fixed null vec-
tor field ξ ∈ X(L), then L is a null hypersurface in (M, g) with null second
fundamental form B respect to ξ given by

B =
1

φ2
(B∗ + ξ (lnφ) g∗) .

In particular, if L is totally umbilic in (M, g∗) with null mean curvature
H∗, then it is also totally umbilic in (M, g) with null mean curvature H =
H∗ + (n− 2)ξ(lnφ).

Proof. Just use that ∇UV = ∇∗UV + 1
φ (g∗(U, V )∇∗φ− U(φ)V − V (φ)U).

Theorem 5.2. Let F ×φ I be a n-dimensional standard static space. If L is a
totally umbilic null hypersurface, then for each (x0, t0) ∈ L there exists a local

decomposition of
(
F, 1

φ2 gF

)
in a neighborhood of x0 as a twisted product with

one dimensional base (
J × S, ds2 + µ(s, z)2gS

)
,

where x0 is identified with (0, z0) for some z0 ∈ S and L is given by

{(s, z, s+ t0) ∈ J × S × I}.

Moreover, if H∗ is the null mean curvature of L, then

µ(s, z) =
φ(0, z)

φ(s, z)
exp

(∫ s

0

H∗(r, z, r + t0)

n− 2
dr

)
.

Conversely, if
(
F, 1

φ2 gF

)
admits a twisted decomposition in a neighborhood

of x0 as above, then

L = {(s, z, s+ t0) ∈ J × S × I}

is a totally umbilic null hypersurface with null mean curvature

H∗ = (n− 2)
d

ds
ln (µφ) . (7)
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Proof. Take the conformal metric g = 1
φ2 g
∗ and apply the above lemma and

Theorem 4.2. For this, take into account that from Equation (4), ξ (lnφ) =
−∂s (lnφ).

Remark 5.3. As in Corollary 4.5, if L is a totally umbilic null hypersurface
in a standard static space, we can construct another totally umbilic null hyper-
surface through each point (x0, t0) ∈ L which we call L̃(x0,t0), the dual of L

through (x0, t0). In fact, if L induces a twisted decomposition of
(
F, 1

φ2 gF

)
in a

neighborhood of x0 where L is given by {(s, z, s+ t0)}, then L̃(x0,t0) is given by
{(s, z,−s + t0)}. From Corollary 4.5 and Lemma 5.1, its null mean curvature
is

H̃∗ = (n− 2)
d

ds
ln

(
φ

µ

)
. (8)

Now, we consider the family of standard static spacetimes given by(
I × S2 × R,

1

h(r)
dr2 + r2g0 − h(r)dt2

)
, (9)

where I ⊂ R, h ∈ C∞(I) is a positive function and g0 is the canonical metric on

S2. This family includes important examples of spacetimes. If h(r) = 1−m2

r + c2

r2

for certain constant m and c, then we get the Reissner-Nordström spacetime (the

Schwarzschild exterior in the case c = 0) and if h(r) = 1 − m2

r + kr2, then we
obtain the De Sitter-Schwarzschild spacetime (Minkowski, De Sitter or anti-De
Sitter if m = 0 and k = 0, k > 0 or k < 0 respectively).

We first need to know how many different twisted decomposition admits the
spatial part of (9) to apply Theorem 5.2 to these spacetimes.

Lemma 5.4. Let F be the warped product
(
I × S2, ds2 + µ(s)2g0

)
. If there

exists a different decomposition of F as a twisted product in a neighborhood of
a point, then F has constant curvature in this neighborhood.

Proof. A twisted decomposition is characterized by the existence of a unitary,
closed and orthogonally conformal vector field, [6]. Therefore, if there exists a
different decomposition as a twisted product in a neighborhood θ ⊂ F , there
is a vector field E with these properties and linearly independent with ∂s in
θ. Hence, any plane containing E has the same sectional curvature. Suppose
that E = α∂s + U with U(s,z) ∈ TzS2 for all (s, z) ∈ θ and consider the planes
Π0 = span (E, ∂s) and Π1 = (E, V ) where V(s,z) ∈ TzS2 with V ⊥ U . A
straightforward computation shows that

K(Π0) = −µ
′′

µ
,

K (Π1) = −α2µ
′′

µ
+

(
1− α2

) (
1− µ′2

)
µ2

.

Therefore, since K(Π0) = K(Π1), it holds µ′′ = µ′2−1
µ . The solutions to

this differential equation are µ(s) = 1
k sinh (ks+ s0), µ(s) = 1

k sin (ks+ s0)

17



or µ(s) = ±s + s0 but for these warping functions the sectional curvature of
ds2 + µ(s)2g0 is −k2, k2 or 0 respectively.

Theorem 5.5. If h ∈ C∞(I) is a positive function such that h′′′ 6≡ 0 in any
open subset of I, then the spacetime given by (9) has exactly two totally umbilic
null hypersurface through each point.

Proof. Call (F, gF ) =
(
I × S2, 1

h(r)dr
2 + r2g0

)
. If we take a function ϕ such

that ϕ′(s) = h (ϕ(s)) and we make the coordinate change r = ϕ(s), then 1
hgF is

written as ds2+µ(s)2g0, where µ(s) = ϕ(s)√
h(ϕ(s))

. Since
(
µ′′

µ

)′
= −h

2h′′′

2 , there is

not any open neighborhood in
(
F, 1hgF

)
with constant curvature. Applying the

above lemma, this warped decomposition is unique. Therefore, using Theorem
5.2 and Remark 5.3, for each point there are exactly two totally umbilic null
hypersurfaces.

Corollary 5.6. In a De Sitter-Schwarzschild with m 6= 0 and in a Reissner-
Nordström spacetime there are exactly two totally umbilic non-totally geodesic
null hypersurface through each point.

Proof. From Equations (7) and (8), the null mean curvatures are H∗ = 2 d
ds lnϕ

and H̃∗ = 2 d
ds ln

(
h
ϕ

)
, which are not identically zero.

Remark 5.7. If we consider the Schwarzschild exterior embedded in the Kruskal
spacetime Q ×r S2, the totally umbilic null hypersurfaces claimed in the above
corollary are given by

{(u, v, x) ∈ Q× S2 : u = u0}

and
{(u, v, x) ∈ Q× S2 : v = v0}.
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