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Abstract

Several integral inequalities, involving the Ricci tensor, for a compact
Lorentzian manifold which admits a timelike conformal vector field are
given. These inequalities relate conjugate points along null geodesics to
global geometric properties. As a consequence, some classification results
on certain compact Lorentzian manifolds without conjugate points along
its null geodesics are shown.
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1 Introduction

On a Lorentzian manifold (M, g), tangent vectors are classified into timelike,
null, or spacelike, and so a (smooth) curve on M is said to be timelike, null,
or spacelike if its tangent vectors are always timelike, null, or spacelike, res-
pectively. Lorentzian Geometry is the mathematical theory used in General
Relativity. In fact, a timelike curve corresponds to the path of an observer
moving at less than the speed of light. Null curves correspond to moving at the
speed of light, and spacelike curves to moving faster than light. Although Re-
lativity predicts that physical particles cannot move faster than light, spacelike
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curves are of undeniable geometric interest. If a timelike or null curve is sup-
posed to be a geodesic, then it represents the path of a “free falling” particle
or the path of a lightlike particle, respectively.

It is commonly argued in General Relativity that the curvature tensor
codifies the gravity, and the relative position of neighbours of a free falling
particle γ, is given by the Jacobi fields on γ. In this way, if the gravity at-
tracts then it will cause conjugate points while if gravity does not attract then
it will prevent them. From a geometric point of view, a conjugate point γ(a) of
p = γ(0) along a geodesic γ can be interpreted as an “almost-meeting point”
of geodesics starting from p with initial velocities near γ′(0). These neighbour-
ing geodesics may, but need not, actually pass through the point γ(a). The
existence of conjugate points on timelike geodesics gives an effect rather like
the “twin paradox” and for null geodesics, may be related to the phenomenon
of gravitational lensing [16]. Moreover, the study of conjugate points along
causal geodesics plays an important role to state Singularity theorems and to
study Causality Theory, see [26] and [15], for instance.

We will be interested here in compact Lorentzian manifolds. All these
manifolds are acausal, i.e. they possess closed timelike curves [26, Lemma
14.10], while a physically admissible spacetime is generally assumed to be free
of closed causal curves. Yurtsever introduced [36] a new notion of causality
for general acausal Lorentzian manifolds. Recall that remarkable examples of
spacetimes M are often merely a connected open set in a larger spacetime M̃ ,
and M can be causal even though M̃ is not [27]. Moreover, it has been pointed
out [25] that general properties of compact spacetimes should be identified in
order to show they are incompatible with astronomical observations, since
the objections to chronology violations are based more on philosophy than
physics. On the other hand, following [36], it is reasonable to expect that
Lorentzian theory on a compact manifold will provide valuable information on
the topology of the underlying manifold, complementary to the one obtained
through the study of Riemannian theory.

It is well-known that not every compact manifold, M , can be endowed
with a Lorentzian metric. This holds if and only if the Euler number of M
vanishes [26, Prop. 5.57]. Moreover, for Lorentzian metrics, compactness does
not imply geodesic completeness, in fact the Clifton-Pohl torus is an example
of this situation [26, Ex. 7.16], [30]. Of course, this is not an isolated example.
A general procedure to construct many incomplete Lorentzian metrics on the
torus was explained in [29]. On the other hand, geodesic completeness in the
Lorentzian setting can be separated into spacelike, null and timelike complete-
ness. These conditions are shown to be independent [26, Ex. 5.43], [30] and
references therein. See also the comment at the end of this paper.
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A way to get completeness in the compact Lorentzian case is to impose
some geometric extra condition on the manifold [30]. In fact, it is relevant for
this work that the existence of a timelike conformal vector field on a compact
Lorentzian manifold yields to its geodesic completeness [31].

A compact Riemannian manifold must be complete as an easy conse-
quence of the classical Hopf-Rinow theorem. Another argument to obtain
the same conclusion is [4, p. 32]: take the unit tangent bundle UB of an
n−dimensional Riemannian manifold (B, gB). It is a fiber bundle over B with
fiber type the (n − 1)−dimensional unit sphere Sn−1. If B is assumed to be
compact, then UB is also compact and therefore the geodesic flow is auto-
matically complete as it is a flow of a vector field on a compact manifold.
This argument fails in the Lorentzian setting because there is no reasonable
fiber bundle over a Lorentzian manifold (M, g) with compact fiber and having
a tangent vector for every direction in TpM for all p ∈ M . In fact, if we
put U+M = {v ∈ TM : g(v, v) = +1} and U−M = {v ∈ TM : g(v, v) = −1},
then both fiber bundles have not compact fibers and neither of them has a
vector for every direction of TM . In order to avoid this difficulty, we will res-
trict our attention to null tangent directions on a Lorentzian manifold which
admits a timelike conformal vector field. Thus the key tool in our work is
the null congruence associated with a timelike conformal vector field K which
can be seen as the manifold of all null tangent directions of (M, g), and it is
denoted by CKM . This null congruence is a fiber bundle over M with com-
pact fiber type Sn−2. As we will point out (see section 4) the geodesic flow
preserves CKM . So, a reasoning as in the previous Riemannian case gives the
null completeness of M , already known from [31].

The main aim of this note is to introduce, following [11] and [12], two new
integral inequalities on compact Lorentzian manifolds which admit a timelike
conformal vector field. These integral inequalities relate conjugate points along
null geodesics with global properties of the Lorentzian manifold. In particular,
we have found an “splitting” result (Corollary 5.4) and several classification
results on certain compact Lorentzian manifolds without conjugate points on
their null geodesics.

The study of conformal vector fields on pseudo-Riemannian geometry is
a topic of special importance, see for instance [24]. In particular, the study of
timelike conformal vector fields on Lorentzian Geometry has been developed
mainly under assumptions of interest in physics and, from a mathematical
viewpoint, the case of timelike Killing vector fields has appeared to be a use-
ful tool to get classification theorems in some area of Lorentzian Geometry [34].
Moreover, standard Lorentzian space forms (those with a time-orientable dou-
ble Lorentzian covering admitting a timelike Killing vector field) have been
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studied in [23]. Recall furthermore, that the existence of a timelike Killing
vector field has been also used to classify compact Lorentzian space forms [18]
and more generally to study and classify compact Einstein Lorentzian mani-
folds [32], [33]. Finally, note that the existence of a timelike conformal vector
field has been also used to study compact spacelike hypersurfaces of constant
mean curvature (see [1], [2] and references therein).

2 Motivations from the Riemannian case

In 1948, E. Hopf published a remarkable theorem where he showed that the
total scalar curvature of a closed surface without conjugate points is nonpositive
and vanishes only if the surface is flat. Therefore, thanks to the Gauss-Bonnet
formula, a Riemannian torus without conjugate points is flat [17]. Hopf’s result
was, ten years after, extended by L.W. Green [8] to compact Riemannian
manifolds as follows: if (B, gB) has no conjugate points then

∫

B
SdµgB ≤ 0, (1)

and it vanishes only if the metric is flat, (here S and dµgB denote, respectively,
the scalar curvature of (B, gB) and the canonical measure associated to gB).
More recently, F. Guimaraes, generalized in [10] the Green theorem to com-
plete Riemannian manifolds under the assumption that the Ricci curvature on
the unit tangent bundle has an integrable positive or negative part.

On the other hand, in [9] L. W. Green solved the famous Blaschke con-
jecture in dimension two. A useful tool to prove it was the so-called Berger
inequality which asserts that area(B, gB) ≥ 2a2

π χ(B), being χ(B) the Euler
number of B, for a 2−dimensional compact Riemannian manifold without con-
jugate points before a fixed distance a in the parameter of any (unit) geodesic.
Moreover, the equality holds only if (B, gB) has constant sectional curvature
π2

a2 . This inequality was later generalized to higher dimensions by Berger and
independently by Green [4, Prop. 5.64] as follows:

Vol(B, gB) ≥ a2

π2n(n− 1)

∫

B
SdµgB , (2)

where (B, gB) is a compact Riemannian manifold of dimension n without
conjugate points before a fixed distance a in the parameter of any geodesic.
Moreover, the equality holds if and only if (B, gB) has constant sectional cur-
vature π2

a2 . Note that Berger’s inequality is a direct consequence of (2), via the
Gauss-Bonnet formula.
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Inspired from these results, we want to study Lorentzian manifolds in
which no null geodesic contains a pair of mutually conjugate points before a
fixed value of a special affine parameter. In fact, assuming the existence of a
timelike conformal vector field, we will distinguish an affine parameter for each
null geodesic, and we deduce an integral inequality in the same philosophy to
(2). We will explote several geometric consequences and show that the Hopf-
Green and the Berger-Green inequalities above can be deduced as a particular
case of our approach.

3 Setup

Let (M, g) be an n(≥ 2)−dimensional Lorentzian manifold; that is a (con-
nected) smooth manifold M endowed with a non-degenerate metric g with
signature (−,+, .....,+). We denote TM for the tangent fibre bundle of M ,
π : TM −→ M for the natural projection and for every v ∈ TM , we write
( )v : Tπ(v)M −→ TvTπ(v)M for the natural identification. We shall write ∇ for
its Levi-Civita connection, R for its Riemannian curvature tensor (our conven-
tion on the curvature tensor is R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z),
Ric for its Ricci tensor, S for its scalar curvature and dµg for the canonical
measure associated with g.

As usual, the causal character of a tangent vector v ∈ TpM is timelike
(resp. null, spacelike) if g(v, v) < 0 (resp. g(v, v) = 0 and v 6= 0, g(v, v) > 0
or v = 0). If v ∈ TpM then, γv will denote the unique geodesic such that
γv(0) = p and γ′v(0) = v . It is well-known that the causal character of γ′(t),
for any geodesic γ of (M, g), does not depend on the parameter t. In particular,
a null geodesic γ of (M, g) is a geodesic such that γ′(t) is a null vector. A
vector field K ∈ X(M) is said to be timelike if Kx is timelike for all x ∈ M .

Recall that the cotangent bundle T ∗M , of an arbitrary manifold M , car-
ries a natural symplectic structure given by dα where α is the 1-form de-
fined by α(ξ) = −q(ξ) [p∗(ξ)] for all ξ ∈ TT ∗M , being q : TT ∗M −→ T ∗M ,
and p : T ∗M −→ M the natural projections. If (M, g) is a Lorentzian ma-
nifold, then g determines a vector bundle isomorphism from TM to T ∗M ,
[ : TM −→ T ∗M , by putting v 7→ g(v, ). If we call αg the pull-back of α
by [, then αg(X) = −g(v, π∗(X)) , where X ∈ Tv(TM). The geodesic vector
field, Zg, is the vector field on TM defined by iZgdαg = dE, where E is given
by E(v) = 1

2g(v, v). The flow {Φt} of Zg, Φt(v) = γ′v(t), is called the geodesic
flow of (M, g).

We point out that the Sasaki metric ĝ induced from the Lorentzian
metric g may be introduced on TM in a similar way to the Riemannian case.
Note that now (TM, ĝ) is a semi-Riemannian manifold with index two, and
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π : (TM, ĝ) −→ (M, g) is a semi-Riemannian submersion.
As it has been said above, we are here interested in the study of conjugate

points along null geodesics (or null conjugate points). Many authors have
thought about this topic, we will quote here several significant results:

1. A conjugate point along a null geodesic γ is an almost-meeting point of
nearby null geodesics, i.e. the geodesic variation of γ could be chosen
such that all its longitudinal geodesics are null geodesics [26, p. 291].
This fact is not obvious from continuity arguments.

2. An essential problem in Lorentzian Geometry is to determine if a given
pair of points can be joined by a timelike curve (Causality Theory).
This is related to conjugate points along null geodesics as follows: if
γ : [0, a] −→ M is a null geodesic with γ(0) and γ(a) conjugate points
along γ, then for every ε > 0 there is a timelike curve from γ(0) to
γ(a + ε) “arbitrarily near” to γ [26, Prop. 10.48].

3. Another important question is to find incomplete geodesics (Singularity
Theory). The Hawking-Penrose conjugancy theorem for null geodesics
connects Singularity Theory to null conjugate points, and it can be stated
as follows: if γv : I −→ M is a null geodesic, Ric(γ′v, γ′v) ≥ 0, and
R( , γ′v(t))γ′v(t), contemplated as a linear operator of the quotient space
Span{γ′v(t)}⊥�Span{γ′v(t)}, is not the zero operator for some t ∈ I,
then γv is incomplete or has a pair of conjugate points (see for instance
[3, Prop. 12.17]).

4. No null geodesic γ in any two-dimensional Lorentzian manifold has con-
jugate points [3, Lemma 10.45].

5. There is no conjugate point along null geodesics in any Lorentzian ma-
nifold of constant sectional curvature [26, Ex. 10-11]. Nevertheless, it
is easy to construct examples of Lorentzian manifolds without conju-
gate points along their null geodesics and which do not have constant
sectional curvature.

Of course, sectional curvature can be defined on Lorentzian manifolds,
but it plays a different role than in the Riemannian case. In fact, it cannot
be stated for null planes (degenerate planes in the induced metric). Now, we
close this section by pointing out two of these differences.

1. There is no compact Lorentzian manifold of constant sectional curvature
c > 0. In fact, for n = 2, it can be directly deduced from the Gauss-
Bonnet formula for Lorentzian metrics. For n ≥ 3, this is a consequence
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of a classical result by Calabi and Markus [5] which implies the inexis-
tence of compact quotients of de Sitter space, and a more recent result
of completeness by Klinger [20].

2. In 1979, Kulkarni showed that if a (connected) n(≥ 3)−dimensional
Lorentzian manifold (M, g) has sectional curvature bounded from above
or bounded from below, then (M, g) has constant sectional curvature
[22] (see also [26, Prop. 8.28]).

We end this section by recalling the well-known notion of null sectional
curvature [13], [14], [3, Definition A.6] to be used later. If v is a null vector
and σ a null plane containing it, the null sectional curvature with respect to v
of the plane σ is defined to be Kv(σ) = g(R(u, v)v, u)/g(u, u), where u(6= 0) is
any vector in σ independent with v (and therefore spacelike). This curvature
does not depend on the choice of the non-zero spacelike vector u, but it does
quadratically on v. An n(≥ 3)−dimensional Lorentzian manifold has constant
sectional curvature if and only if has null sectional curvature everywhere zero
[26, Prop. 8.28].

4 Null Congruence

From now on (M, g) will be a (time orientable) Lorentzian manifold with
dimension n ≥ 3, and K a timelike vector field on M . Recall [14], [21] that
the null congruence associated to K is defined by

CKM =
{
v ∈ TM : g(v, v) = 0, g(v, Kπ(v)) = 1

}
. (3)

The null congruence has the following nice properties: for each null tan-
gent vector v, there exists a unique t ∈ R such that tv ∈ CKM , and the map
v 7−→ [v] is a diffeomorphism from CKM to the manifold of the null directions
of M , N = {[v] ∈ PM : g(v, v) = 0} (here we denote by PM the projective
fiber bundle associated to TM).

The null congruence CKM is an orientable embedded submanifold of TM
with dimension 2(n − 1). Moreover (CKM, π,M) is a fiber bundle with fibre
type Sn−2, and so CKM will be compact if M is compact. If ĝ also represents
the induced metric on CKM from the Sasaki one of TM , then (CKM, ĝ) is a
Lorentzian manifold and the restriction of π to CKM is a semi-Riemannian
submersion with spacelike fibers (see [11] for details). We shall write dµĝ for
the canonical measure on CKM induced from ĝ.

This manifold is our main tool in the study of null conjugate points. From
a geometric point of view, the null congruence has been systematically studied
in [11], where the reader can find the following results:
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1. The volume element of (CKM, ĝ) is given, up to a constant multiple, by
the 2(n− 1)−form βg ∧ αg ∧ (dαg)n−2, where βg(X) = −g(Kπv, π∗(X))
for every X ∈ TvCKM .

2. The fiber π−1(x) = (CKM)x is isometric to
(
Sn−2,−g(Kx,Kx)−1gcan

)
,

where
(
Sn−2, gcan

)
is the canonical unit Riemannian sphere. Therefore

(CKM)x is isometric to a Riemannian sphere of radius [−g(Kx,Kx)]−1/2.
Note that there is a remarkable difference with the unit tangent bundle
of a Riemannian manifold, where all the fibers are isometric. We will
write h = [−g(K,K)]−1/2 and so g(U,U) = −1 with U = hK.

3. CKM is invariant by the geodesic flow if and only if the vector field K
is assumed to be conformal, i.e. LKg = ρg for some ρ ∈ C∞(M). More-
over, in such a case div (Zg |CKM ) = 0, where div denotes the divergence
operator of (CKM, ĝ). So, if (M, g) is compact and K is conformal
(therefore (M, g) is geodesically complete [31]) then, we have:

∫

CKM
(f ◦ Φt)dµĝ =

∫

CKM
fdµĝ (4)

for every f ∈ C0(CKM) and t ∈ R.

4. If K is conformal, then every null geodesic γv of (M, g) with v ∈ CKM ,
gives rise to the null geodesic γ′v of (CKM, ĝ). Furthermore, each null
geodesic β of (M, g) may be reparametrized to obtain a null geodesic α
which satisfies α′(t) ∈ CKM. In fact, g(β′,Kβ) = a ∈ R, a 6= 0. Thus, if
we put α(t) = β( t

a) we achieve g(α′,Kα) = 1.

If a null congruence associated with a timelike vector field K (conformal or
not) has been fixed, then we may choose, for every null plane σ, the unique null
vector v ∈ CKM ∩ σ. Therefore, the null sectional curvature can be thought
as a function on null planes. Along this note we always use such convention,
and we will call it the K−normalized null sectional curvature.

5 The integral inequalities

We recall that if γv : [0, a] −→ M is a null geodesic such that there are
no conjugate points of γv(0) in [0, a), then the Hessian form H⊥

γv
is positive

semidefinite, i.e.

H⊥
γv

(V, V ) :=
∫ a

0

[
g
(∇V

dt
,
∇V

dt

)
− g(R(V, γ′v)γ

′
v, V )

]
dt ≥ 0, (5)
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for every vector field V along γv such that V (0) = 0, V (a) = 0 and g(γ′v, V ) =
0, [26, pp. 290-1]. Moreover, a standard argument permits us to show, that
if H⊥

γv
(V, V ) = 0 then ∇2V

dt2
+ R(V, γ′v)γ′v = fγ′v where f is a smooth function.

Observe that, in contrast to the well-known Riemannian case, here the con-
dition H⊥

γv
(V, V ) = 0 does not imply, in general, that V is a Jacobi vector

field.
From now on, we will assume that M is ((n ≥ 3)-dimensional) compact

and (M, g) admits a timelike conformal vector field K.
We are ready to introduce the integral inequalities that involve null con-

jugate points. The proof of the following result makes use of (4) and (5). It
can be found in [11, Th. 3.2]. We put R̂ic(v) = Ric(v, v) for all v ∈ CK(M).

Theorem 5.1 If there exists a ∈ (0,+∞) such that every null geodesic γv :
[0, a] −→ M , with v ∈ CKM , has no conjugate point of γv(0) in [0, a), then

Vol(CKM, ĝ) ≥ a2

π2(n− 2)

∫

CKM
R̂ic dµĝ. (6)

Moreover, equality holds if and only if (M, g) has constant K−normalized null
sectional curvature π2

a2 .

Notice that the equality holds in (6) if and only if (M, g) has U−normalized
null sectional curvature−π2

a2 g(K,K). That is, the U−normalized null sectional
curvature of (M, g) is an everywhere non-zero point function. An equivalent
condition to this [11, Remark 3.4] was studied by H. Karcher, [19]. He showed,
when n ≥ 4, the following theorem:

Let U be a unit timelike vector field on an n(≥ 4)− dimensional
Lorentzian manifold (M, g). The U−normalized null sectional cur-
vature is a everywhere non-zero point function if and only if:
1. The distribution U⊥ is integrable.
2. The integral manifolds of U⊥ are totally umbilic and have cons-
tant sectional curvature.
3. (M, g) is locally conformal to a flat Lorentzian space.

We would like to point out that conclusion 1 above does not remain true
if it is assumed dimM = 3 [11, Remark 4.4].

On the other hand, as it has been proved in [11]:

Vol(CKM, ĝ) = Vol(Sn−2, gcan)
∫

M
hn−2dµg (7)
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and ∫

CKM
R̂ic dµĝ =

Vol(Sn−2, gcan)
n− 1

∫

M
[nRic(U,U) + S] hndµg. (8)

Therefore, we can rewrite Theorem 5.1 as follows:

Theorem 5.2 If there exists a ∈ (0,+∞) such that every null geodesic γv :
[0, a] −→ M , with v ∈ CKM , has no conjugate point of γv(0) in [0, a), then

∫

M
hn−2dµg ≥ a2

π2(n− 1)(n− 2)

∫

M
[nRic(U,U) + S] hndµg. (9)

Moreover, equality holds if and only if (M, g) has U−normalized null sectional
curvature −π2

a2 g(K, K).

If any null geodesic does not contain a pair of mutually conjugate points,
then (9) is valid for all positive a. Since

∫
M hn−2dµg < +∞, we achieve (10).

The equality case in (10) requires a more intricate argument [12].

Theorem 5.3 If there are no conjugate points along the null geodesics, then
∫

M
[nRic(U,U) + S] hndµg ≤ 0. (10)

Moreover, equality holds if and only if (M, g) has constant sectional curvature
c ≤ 0.

This result allows us to show the existence of null conjugate points without
using the Jacobi equation [11, Cor. 4.3]. Moreover, it can be thought as an
integral condition to obtain constant sectional curvature from the absence of
null conjugate points (compare with [7]).

If K is assumed, more restrictibly, to be Killing, then we have proved in
[11, Lemma 3.12] that

∫
M Ric(U,U)hndµg ≥ 0, and equality holds if and only

if U is parallel (and hence, h is a constant function). This fact permits us to
improve, in that case, Theorems 5.2 and 5.3 to get:

Corollary 5.4 If K is Killing and there is a ∈ (0,+∞) such that every null
geodesic γv : [0, a] −→ M , v ∈ CKM , has no conjugate point of γv(0) in [0, a),
then ∫

M
hn−2dµg ≥ a2

π2(n− 1)(n− 2)

∫

M
Shndµg. (11)

Moreover equality holds if and only if g(K, K) is constant and the universal
covering of (M, g) is globally isometric to the semi-Riemannian product(
R× Sn−1(ah

π ),−dt2 + gcan

)
.
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Corollary 5.5 If K is Killing and there are no conjugate points along the
null geodesics, then ∫

M
Shndµg ≤ 0. (12)

The equality holds if and only if (M, g) is flat. Moreover, in this case, U is
parallel, the first Betti number of M is not zero and the Levi-Civita connection
of g is Riemannian.

Remark 5.6 Kamishima proved that if a compact Lorentzian manifold ad-
mits a timelike Killing vector field and has constant sectional curvature c,
then it is complete and c ≤ 0. Moreover, it is affinely diffeomorphic to a Rie-
mannian manifold with non-zero first Betti number if c = 0 [18, Th. A (1)].
Last result was extended in [32, Th. 3.2] to a compact Ricci-flat Lorentzian
manifold which admits a timelike Killing vector field, and later, in [33, Cor.
3.9], to the conformal case. Since a Lorentzian manifold of constant sectional
curvature has no conjugate point along its null geodesics, Corollary 5.5 is a
proper extension (in other direction to [33, Cor. 3.9]) of Kamishima’s theorem.

Note that in case that the equality holds in Corollary 5.5, from [35, Cor.
3.4.6], there is a (finite) Lorentzian covering of (M, g) by a flat Lorentzian
torus [12].

Corollaries 5.4 and 5.5 contain, as a very particular case, the classical
Berger-Green [9] and Hopf-Green [8] inequalities in Riemannian geometry,
respectively.

Corollary 5.7 Let (B, gB) be a compact Riemannian manifold of dimension
n ≥ 2 and scalar curvature S. Suppose that no unit geodesic γ : [0, a] −→ B
has a conjugate point of γ(0) in [0, a), then

Vol(B, gB) ≥ a2

π2n(n− 1)

∫

B
SdµgB . (13)

Moreover, equality holds if and only if (B, gB) has constant sectional curvature
π2

a2 .

Proof. If we take (M, g) = (S1 ×B,−gcan + gB) and the unit timelike Killing
vector field K as the lift to S1×B of the vector field z 7−→ iz on S1 ⊂ C, then
it is easy to see that every null geodesic γv of (M, g), with v ∈ CKM , has no
conjugate point in [0, a). Therefore Corollary 5.4 gives

Vol(M, g) ≥ a2

π2n(n− 1)

∫

M
Sgdµg, (14)
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where Sg denotes the scalar curvature of (M, g), and equality holds if and only
if (M, g) has K−normalized null sectional curvature π2�a2. Taking into ac-
count that Vol(M, g) = 2πVol(B, gB) and Sg(z, x) = S(x) for (z, x) ∈ M , we
obtain (13) from (14). Finally note that (M, g) has K−normalized null sec-
tional curvature π2�a2 if and only if (B, gB) has constant sectional curvature
π2�a2. ¥

Corollary 5.8 Let (B, gB) be a compact Riemannian manifold of dimension
n ≥ 2 and scalar curvature S, if (B, gB) has no conjugate point then

∫

B
SdµgB ≤ 0. (15)

Moreover, equality holds if and only if (B, gB) is flat.

Proof. It is easy to see that no null geodesic γv of (M, g) has conjugate points.
Therefore Corollary 5.5 gives

∫

M
Sgdµg ≤ 0, (16)

and equality holds if and only if (M, g) is flat. Then we get (15) from (16).
Finally (M, g) is flat if and only if (B, gB) is flat. ¥

Note that, in the Lorentzian case, only null geodesics are involved in the
assumptions of the integral inequalities, whereas in the Riemannian setting,
all geodesics are implicated. Nevertheless, Theorem 5.2 and Corollary 5.4 give
us, in particular, information about the volume of the Lorentzian manifold
(M, g) only from the study of its null conjugate points. In fact, compactness
of M implies that there exists an upper bound b > 0 for the function h, and
so we have

∫
M hn−2dµg ≤ bn−2Vol(M, g).

Another relationships of null geodesics to global properties of Lorentzian
manifolds have been pointed out in previous works. For instance, in [28]
it was conjectured that a null complete compact Lorentzian manifold must
be complete. Although this conjecture has deserved the attention of some
geometers [6], it remains now as an open problem.
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