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Abstract

An integral inequality on a compact Lorentzian manifold admitting
a timelike conformal vector field is shown under some assumption on
its conjugate points along null geodesics. The inequality relates the be-
haviour of these conjugate points to global geometrical results. As an ap-
plication, several properties of the null geodesics of a natural Lorentzian
metric on each odd dimensional sphere are obtained.

1 Introduction

In [5], [6] the authors have introduced a new integral inequality on a remarkable
family of compact Lorentzian manifolds. It reproves a classical result of M.
Berger and L.W. Green in Riemannian geometry [4, Theors. 4.2, 5.3], and, in
a suitable way, extends it to the Lorentzian setting. The main aim of this note
is to show the use of that integral inequality to the study of conjugate points
along null geodesics on Lorentzian odd dimensional spheres. In fact, each odd
dimensional sphere may be endowed with a natural Lorentzian metric (section
3). Our method permits us to study null conjugate points without using the
Jacobi equation and related techniques. Moreover, as far as we know, there
are not many examples of compact Lorentzian manifolds where the behaviour
of their null geodesics, null conjugate points and null conjugate loci have been
described.

Compact Lorentzian manifolds have been historically neglected because
of both physical and mathematical reasons. Recall that they have closed
timelike curves, and therefore they are acausal (in particular, they cannot be
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isometrically immersed in a Lorentz-Minkowski space of any dimension) and
not physically admissible. On the other hand, a compact Lorentzian mani-
fold may be geodesically incomplete (this fact is well known) and the elliptic
model of Lorentzian space form is not compact (contrary to the Riemannian
case). However, it has been recently argued [20] that the study of field the-
ory on compact spacetimes could be interesting for Physics and it could give
valuable information about the underlying manifold, complementary to the
one obtained from the Riemannian theory. From a mathematical point of
view, the lack of completeness in the compact case gave rise to the obtention
of extra conditions which joint to compactness would imply completeness of
the Lorentzian manifold. For instance, in [10] it has been proved that every
compact Lorentzian manifold with constant sectional curvature is geodesically
complete (the flat case was previously shown in [2]); in [16] that every com-
pact Lorentzian manifold which admits a timelike conformal vector field is
geodesically complete (see also [14] for a wide information on completeness of
Lorentzian manifolds). Physicists are familiarized with the study of conformal
vector fields, in fact the assumption of their existence on spacetime is a way
to impose some symmetry useful, for instance, to study the Einstein equations
(see, for example [3]). Finally, recall the outstanding role of timelike con-
formal vector fields in the introduction of Bochner’s technique in Lorentzian
manifolds [17], [18], [13].

The content of this note is organized as follows. Section 2 is first devoted
to recall the notion and main properties of the null congruence associated to a
timelike conformal vector field on a Lorentzian manifold. In the compact case,
an integral inequality is shown, Theorem 2.1, and, using a well known result
of H. Karcher, it is analyzed when the equality holds. Moreover, we also show
that Theorem 2.1 provides information on the manifold from the nonexistence
of null conjugate points.

Finally, in section 3 we consider a natural Lorentzian metric g on each
sphere S2n+1 (it was called canonical in [20]) which is introduced from three
different procedures. It is shown that g has a large group of isometries, an
isotropic property for null tangent directions and that it is homogeneous,
Proposition 3.2. Its null geodesics are studied, showing that no null geodesic is
closed. Null conjugate points and null conjugate loci are analyzed, Proposition
3.3. In fact, it is shown that all past (or future) null geodesics starting from a
point p meet at the second conjugate point of p, and that the null conjugate
locus at every point is an imbedded (2n− 1)−dimensional sphere S2n−1.
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2 Preliminaries

Let (M, g) be an n(≥ 2)−dimensional Lorentzian manifold; that is a (con-
nected) smooth manifold M endowed with a non-degenerate metric g with
index 1, i.e. with signature (−, +, ..., +). As usual, TpM denotes the tangent
space at p ∈ M , TM the tangent bundle of M , and π : TM −→ M the na-
tural projection. We shall write ∇ for the Levi-Civita connection of g, R for
the Riemannian curvature tensor (our convention on the curvature tensor is
R(X, Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z), Ric for the Ricci tensor, ˜Ric for
the corresponding quadratic form, S for the scalar curvature and dµg for the
canonical measure induced from g.

The causal character of a tangent vector v ∈ TpM is timelike (resp. null,
spacelike) if g(v, v) < 0 (resp. g(v, v) = 0 and v 6= 0, g(v, v) > 0 or v = 0).
If v ∈ TpM then, γv will denote the unique geodesic such that γv(0) = p and
γ′v(0) = v. It is well-known that the causal character of the velocities γ′(t), for
any geodesic γ of (M, g), does not depend on the parameter t. In particular,
a null geodesic γ of (M, g) is a geodesic such that γ′(t) is a null vector. A
vector field K ∈ X(M) is said to be timelike if Kp is timelike for all p ∈ M .
A timelike or null tangent vector v ∈ TpM is said to be future (resp. past)
with respect to K if g(v,Kp) < 0 (resp. g(v, Kp) > 0). We will write U = hK
where h = [−g(K,K)−

1
2 ] and so g(U,U) = −1 holds on all M .

Let ĝ be the Sasaki metric on TM induced from the Lorentzian metric g.
We point out that it may be introduced in a similar way to the Riemannian
case. But now ĝ is semi-Riemannian with index 2, and the fact that the
natural projection π : (TM, ĝ) −→ (M, g) is a semi-Riemannian submersion
remains true.

Throughout the remainder of this paper, (M, g) will denote a Lorentzian
manifold with dimension n ≥ 3, time oriented by a timelike vector field K.
Recall [8], [12] that the null congruence associated to K is defined as follows:

CKM =
{

v ∈ TM : g(v, v) = 0, g(v, Kπ(v)) = 1
}

. (1)

This subset of TM has the following nice properties [5], [6]:

(i) For each null tangent vector v, there exists a unique t ∈ R such that
tv ∈ CKM , and the map v 7−→ [v] is a diffeomorphism from CKM to the
manifold N = {[v] ∈ PM : g(v, v) = 0} of the null directions of M (here PM
denotes the projective fiber bundle associated to TM).

(ii) It is an orientable imbedded submanifold of TM with dimension 2(n− 1).
Moreover (CKM, π, M) is a fiber bundle with fibre type Sn−2, and so CKM
will be compact if M is assumed to be compact.
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(iii) The induced metric on CKM from the Sasaki metric of TM , which we
agree also to represent by ĝ, is Lorentzian. Moreover, the restriction of π to
CKM is a semi-Riemannian submersion with spacelike fibers.

Sectional curvature of a Lorentzian metric can be defined for nondegen-
erate tangent planes but it cannot be stated for null planes (i.e. degenerate
planes). If v is a null tangent vector and σ a null plane containing it, the
null sectional curvature with respect to v of the plane σ is defined to be
Kv(σ) = g(R(u, v)v, u)/g(u, u), where {u, v} is a basis of σ [7], [8], [1, Def.
A.6]. Note that Kv(σ) does not depend on the choice of the non-zero spacelike
vector u, but it does quadratically on v.

From now on let us suppose that a null congruence associated with a
timelike vector field K has been fixed. Then, we may choice, for every null
plane σ, the unique null vector v ∈ CKM ∩σ, thus the null sectional curvature
can be thought as a function on null tangent planes. In this note we always use
such convention, and we will call it the K−normalized null sectional curvature.

Until now, no extra hypothesis on the timelike vector field K has been
assumed. Recall that a vector field X is called conformal (resp. Killing) if each
of its (local) fluxes consists of (local) conformal (resp. isometric) transforma-
tions. It is well known that X is conformal if and only if the Lie derivative of g
with respect to X satisfies LXg = ρg, where ρ : M → R (Killing when ρ = 0).
If K is assumed to be conformal, then every null geodesic γv of (M, g) with
v ∈ CKM , provides us with the null geodesic γ′v of (CKM, ĝ). Furthermore,
each null geodesic β of (M, g) may be reparametrized to obtain a null geodesic
α which satisfies α′(t) ∈ CKM. In fact, consider the real number a = g(β′,Kβ),
which satisfies a 6= 0. If we put α(t) = β( t

a), then g(α′,Kα) = 1 holds for
all t. Null geodesics will be considered to be parametrized by this K−affine
parameter.

We will next assume that (M, g) is a compact Lorentzian manifold and K
a timelike conformal vector field. Recall that in this case (M, g) is geodesically
complete [16]. The following integral inequality is the key tool to relate null
conjugate points to global geometric properties:

Theorem 2.1 [5, Theor. 3.5] Let (M, g) be a compact Lorentzian manifold
which admits a timelike conformal vector field K. If there exists a ∈ (0, +∞)
such that every null geodesic γv : [0, a] −→ M , with v ∈ CKM , has no conju-
gate point of γv(0) in [0, a), then

∫

M
hn−2dµg ≥

a2

π2(n− 1)(n− 2)

∫

M

[

n˜Ric(U) + S
]

hndµg. (2)

Moreover, equality holds if and only if (M, g) has U−normalized null sectional
curvature π2

a2h2 .
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Observe that if equality holds in (2) then the U−normalized null sectional
curvature of (M, g) is an everywhere non-zero point function. On the other
hand, it was proven by H. Karcher, [9] the following result:

Let U be a unit timelike vector field on an n(≥ 4)− dimensional Lorentzian
manifold (M, g). The U−normalized null sectional curvature is an everywhere
non-zero point function if and only if the following conditions hold:

1. The distribution U⊥ is integrable.

2. The integral manifolds of U⊥ are totally umbilic and have constant
sectional curvature.

3. (M, g) is locally conformal to a flat Lorentzian manifold.

Combining Theorem 2.1 and Karcher’s result we can give a characteri-
zation of the equality in (2) in terms of the distribution U⊥(= K⊥) and the
locally conformal flatness of (M, g).

Moreover, Theorem 2.1 provides also information of (M, g) from the nonex-
istence of null conjugate points. In fact, if it is assumed that every null geodesic
does not contain a pair of mutually conjugate points, then (2) is valid for any
positive real number a. Therefore it must happen

∫

M

[

n˜Ric(U) + S
]

hndµg ≤ 0. (3)

In the next section we will use the integral inequality (2) to get a bound
of a for a relevant family of compact Lorentzian manifolds which admit a unit
timelike Killing vector field.

3 Lorentzian Odd Dimensional Spheres

We consider R2n+2 identified to Cn+1 as usual: (x1, ..., x2n+2) = (z1, ..., zn+1),
with zj = xj + ixn+1+j . So that, the unit sphere of R2n+2 is written

S2n+1 =
{

z = (z1, ..., zn+1) ∈ Cn+1 :
n+1
∑

j=1

|zj |2 = 1
}

.

Let U ∈ X(S2n+1) be given by Uz = iz at any z ∈ S2n+1. For the canonical
Riemannian metric gcan of S2n+1, U is Killing and satisfies gcan(U,U) = 1.
Therefore, ∇UU = 0, where ∇ is the Levi-Civita connection of gcan; that is,
the integral curves of U are geodesics of gcan.
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Let ω be the 1−form metrically equivalent to U with respect to gcan. A
Lorentzian metric on S2n+1 can be defined by

g = gcan − 2ω ⊗ ω. (4)

This construction of g from gcan is standard, but the Lorentzian metric g
deserves of making stand out among all the Lorentzian metrics of S2n+1. In
fact, it has previously considered [20]. It is not difficult to show that the
Levi-Civita connection ˜∇ of g satisfies:

˜∇XY = ∇XY − 2 ω(X)∇Y U − 2ω(Y )∇XU, (5)

where X,Y ∈ X(S2n+1). Moreover, the vector field U satisfies g(U,U) = −1,
it is Killing for g and ˜∇UU = 0; so that, its integral curves are unit timelike
geodesics of g. On the other hand, observe that the inclusion S2n+1 ↪→ S2m+1,
n < m, (z1, .., zn+1) 7→ (z1, .., zn+1, 0, .., 0) is a totally geodesic Lorentzian sub-
manifold, when both spheres are endowed with the corresponding Lorentzian
metrics (4).

Recall now the classical Hopf fibration Π : (S2n+1, gcan) → (CPn, gFS),
z 7→ [z], where CPn is the complex projective space endowed with its Fubini-
Study Kähler metric gFS of constant holomorphic sectional curvature 4 [11,
p. 273]. Recall that Π permits to consider S2n+1 as a principal fiber bundle
over CPn with structural group S1. Moreover, Π is a Riemannian submersion
with totally geodesic fibres. If the Riemannian metric gcan is replaced by the
Lorentzian metric g, then Π becomes a semi-Riemannian submersion from
(S2n+1, g) to (CPn, gFS) with timelike totally geodesics fibres. Let us remark
that g may be considered as a particular case of a Kaluza-Klein metric. In
fact, if we put s1 = iR for the Lie algebra of S1 then iω is a connection form
on S2n+1, and g = Π∗(gFS) − ω ⊗ ω, [15].

As a third description of the Lorentzian metric g, note that it can be
characterized from the properties:

g|V = −gcan|V , g|H = gcan|H , g(V,H) = 0, (6)

where V and H are respectively the vertical and the horizontal distributions
for the canonical connection of the Hopf fibration.

Now recall that if U is a unit timelike vector field on a Lorentzian manifold
(M, g), and p ∈ M , (M, g) is said to be spatially isotropic with respect to
U at p if for every two unit vectors u1, u2 ∈ U⊥

p there exists an isometry
φ : M −→ M such that φ(p) = p, dφp(Up) = Up and dφp(u1) = u2. (M, g) is
said to be spatially isotropic with respect to U if it is spatially isotropic with
respect to U at every point, [19, p. 47]. The following results are easy to show:
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Lemma 3.1 Let (M, g) be a Lorentzian manifold which admits a unit timelike
vector field U . Then (M, g) is spatially isotropic with respect to U if and only
if for every p ∈ M and for every u, v ∈ (CUM)p there exists an isometry
φ : M −→ M such that φ(p) = p, dφp(Up) = Up and dφp(u) = v.

Proposition 3.2 [5, Prop. 4.2] (S2n+1, g) is spatially isotropic with respect to
U and the unitary group U(n + 1) acts transitively by g−isometries on S2n+1.

Now note that in order to analyze the behaviour of the null geodesics of the
Lorentzian odd dimensional spheres, it suffices to consider the ones starting
from the specific point p = (1, ..., 0) ∈ S2n+1. Observe that v ∈ (CUS2n+1)p if
and only if v = (−i, v2, ..., vn+1) with

∑n+1
j=2 | vj |2= 1.

If we agree to represent γv(t) = (Θv
1(t), ..., Θ

v
n+1(t)), with Θv

k : R → C,
1 ≤ k ≤ n + 1, then we get:

Θv
1(t) =

2−
√

2
4

e(−2−
√

2)it +
2 +

√
2

4
e(−2+

√
2)it

Θv
j (t) =

√
2ivj

4

[

e(−2−
√

2)it − e(−2+
√

2)it
]

, j ≥ 2,

The following figures show each kind of components of a lightlike geodesic.
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From the previous equations the following facts directly follow:

(1) There is no closed null geodesic in (S2n+1, g),
(2) For every v, u ∈ (CUS2n+1)p, v 6= u, γv(t) = γu(t) holds if and only if

t = kπ√
2

for some k ∈ Z.
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Now we pay attention to curvature properties of (S2n+1, g). Its scalar
curvature S can be computed to obtain S = 2n(2n+3). On the other hand, we
get ˜Ric(U) = 2n and the U−normalized null sectional curvature of (S2n+1, g)
is a point function if and only if n = 1, with Kv(v⊥) = 8 for any v ∈ CUS3,
(see [5] for details). So, it should be pointed out that the first conclusion in
Karcher’s theorem does not remain true if it is assumed dimM = 3, because
of non integrability of the distribution U⊥.

We end this note with an application of our integral inequality (2) to the
study of the behaviour of conjugate points along null geodesics in Lorentzian
odd dimensional spheres.

Proposition 3.3 [5, Prop. 4.4] For every null geodesic γv of (S2n+1, g) with
v ∈ CUS2n+1, the points γv(0) and γv( π

2
√

2
) are conjugate and there is no

conjugate point to γv(0) on [0, π
2
√

2
). Moreover the past null conjugate locus of

each point p ∈ S2n+1 is a (2n− 1)−dimensional imbedded sphere.

Observe that previous result may be dualized to analyze the future null
conjugate locus.

Remark 3.4 A conjugate point γ(a) of γ(0) = p along a null geodesic γ can
be interpreted as an “almost-meeting point” of null geodesics starting from p.
In our case, the first conjugate point along any null geodesic is exactly at the
middle of the path to the first “meeting point” which is the second null conju-
gate point. Thus, null geodesics of S2n+1 have an “Auf wiedersehensflächen”
type property as in Riemannian case, but in contrast to that, in the Lorentzian
setting the first “meeting point” is not the first conjugate point.
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