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Additional Topics
3.A Universal Coefficients for Homology

The main goal in this section is an algebraic formula for computing homology with
arbitrary coefficients in terms of homology with Z coefficients. The theory parallels
rather closely the universal coefficient theorem for cohomology in §3.1.

The first step is to formulate the definition of homology with coefficients in terms
of tensor products. The chain group C, (X;G) as defined in §2.2 consists of the finite
formal sums >; g;0; with g; € G and 0;:A"™ —X. This means that C,,(X;G) is a
direct sum of copies of G, with one copy for each singular n-simplex in X. More gen-
erally, the relative chain group C, (X, A;G) = C,,(X;G)/C,(A;G) is also a direct sum
of copies of G, one for each singular n-simplex in X not contained in A. From the
basic properties of tensor products listed in the discussion of the Kiinneth formula
in §3.2 it follows that C, (X, A;G) is naturally isomorphic to C,(X,A)®G, via the
correspondence > ; g;0; — >.;0;®g;. Under this isomorphism the boundary map
C,(X,A;G)—C,,_1(X,A;G) becomes the map 0o 1:C,(X,A)®G—C,_1(X,A)®G
where 0:C,,(X,A)—C,_,(X,A) is the usual boundary map for Z coefficients. Thus
we have the following algebraic problem:

Given a chain complex --- — C, L, C,,_; — -+ of free abelian groups C,,,
is it possible to compute the homology groups H, (C;G) of the associated
chain complex --- — C,, ®G LS Cy_1®G—> - justin terms of G and

the homology groups H,,(C) of the original complex?

To approach this problem, the idea will be to compare the chain complex C with two
simpler subcomplexes, the subcomplexes consisting of the cycles and the boundaries
in C, and see what happens upon tensoring all three complexes with G.

Let Z, = Kero, c C,, and B, = Imd,,,; € C,. The restrictions of 0, to these
two subgroups are zero, so they can be regarded as subcomplexes Z and B of C
with trivial boundary maps. Thus we have a short exact sequence of chain complexes
consisting of the commutative diagrams

0 Zn c,—2 g 0
() o [ o
0 Zn Ch1r—— Bno» 0

The rows in this diagram split since each B,, is free, being a subgroup of the free group
C,. Thus C, = Z, ®B,,_;, but the chain complex C is not the direct sum of the chain
complexes Z and B since the latter have trivial boundary maps but the boundary
maps in C may be nontrivial. Now tensor with G to get a commutative diagram
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0,81
0 Z,®G C,®G B, ,®G——0
ii 2,81 3,01 3, 81
(ii) l 1 2, @l l 1®
0—>Zn,1®G Cn,1®G Bn,2®G—>0

The rows are exact since the rows in (i) split and tensor products satisfy (A®B)® G ~
A®G®B®G, so the rows in (ii) are split exact sequences too. Thus we have a short
exact sequence of chain complexes 0—Z® G— C®G— B® G — 0. Since the boundary
maps are trivial in Z® G and B® G, the associated long exact sequence of homology
groups has the form

(i)  ---—B,®G—Z,8G—H,(C;G) — B, ,8G—Z, | ®G— ---

The ‘boundary’ maps B, ® G— Z, ®G in this sequence are simply the maps i, ®1
where i, : B, — Z,, is the inclusion. This is evident from the definition of the boundary
map in along exact sequence of homology groups: In diagram (ii) one takes an element
of B, ,®G, pulls it back via (3,,e1)"' to C,®G, then applies 9, ®1 to get into
C,,_1®G, then pulls back to Z,,_;®G.

The long exact sequence (iii) can be broken up into short exact sequences

(iv) 0 — Coker(i,®1) — H, (C;G) — Ker(i,,_; 1) —0
where Coker(i,®1) = (Z,®G)/Im(i, ® 1). The next lemma shows this cokernel is

just H,(C)®G.

Lemma 3A.1. If the sequence of abelian groups A LB R C — 0 is exact, then
sois A®G 2L pec L2 co G — 0.

Proof: Certainly the compositions of two successive maps in the latter sequence are
zero. Also, je 1 is clearly surjective since j is. To check exactness at B® G it suffices
to show that the map B®G/Im(i® 1) —C®G induced by j® 1 is an isomorphism,
which we do by constructing its inverse. Define amap ¢ :CxG—B®G/Im(ie 1) by
@(c,g) = beg where j(b) = c. This @ is well-defined since if j(b) = j(b') =
then b — b = i(a) for some a € A by exactness, so beg —b'eg = (b—-b')eg

9}

i(a)eg € Im(i®1). Since @ is a homomorphism in each variable separately, it
induces a homomorphism C® G—B®G/Im(i® 1). This is clearly an inverse to the
map BOG/Im(iell)—C®G. O

Itremains to understand Ker(i,,_; ® 1), or equivalently Ker(i,, ® 1). The situation
is that tensoring the short exact sequence
(v) 0—> B, - 7, — H,(C) — 0

with G produces a sequence which becomes exact only by insertion of the extra term
Ker(i,®1):

(vi) 0—Ker(i,e1) — B, 86 225 7 € G— H, (C)®G — 0
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What we will show is that Ker(i,, ® 1) does not really depend on B,, and Z,, but only
on their quotient H, (C), and of course G.

The sequence (v) is a free resolution of H,,(C), where as in §3.1 a free resolution
of an abelian group H is an exact sequence

f2 bil fo

'_’FZ Fl FO H—O0

with each F,, free. Tensoring a free resolution of this form with a fixed group G
produces a chain complex

—FecL L Fec L HeG—0
By the preceding lemma this is exact at F,® G and H ® G, but to the left of these two
terms it may not be exact. For the moment let us write H, (F®G) for the homology
group Ker(f, e 1)/Im(f,.,1).

Lemma 3A.2. For any two free resolutions F and F' of H there are canonical iso-
morphisms H,(F®G) ~ H,(F' ®G) for all n.

Proof: We will use Lemma 3.1(a). In the situation described there we have two free
resolutions F and F' with a chain map between them. If we tensor the two free
resolutions with G we obtain chain complexes F® G and F’ ® G with the maps «,, ® 1
forming a chain map between them. Passing to homology, this chain map induces
homomorphisms «, :H,,(F®G)—H, (F "® G) which are independent of the choice of
«,,’s since if «,, and «), are chain homotopic via a chain homotopy A,, then o, & 1
and o, ® 1 are chain homotopic via A, @ 1.

For a composition H = H' B, H'"" with free resolutions F, F', and F' of these
three groups also given, the induced homomorphisms satisfy (fx), = B,«, since
we can choose for the chain map F—F" the composition of chain maps F—F —F" .
In particular, if we take « to be an isomorphism, with S its inverse and F' = F,
then ., = (Bx), = 1, = 1, and similarly with f and « reversed. So «, is an
isomorphism if « is an isomorphism. Specializing further, taking « to be the identity
but with two different free resolutions F and F', we get a canonical isomorphism
1,:H,(F®G)—H, (F ®G). O

The group H,,(F®G), which depends only on H and G, is denoted Tor,, (H,G).
Since a free resolution 0— F, — F,— H — 0 always exists, as noted in §3.1, it follows
that Tor, (H,G) = 0 for n > 1. Usually Tor, (H, G) is written simply as Tor(H, G). As
we shall see later, Tor(H, G) provides a measure of the common torsion of H and G,
hence the name ‘Tor.’

Is there a group Tor((H, G)? With the definition given above it would be zero since
Lemma 3A.1 implies that F;®G—F,® G—H®G— 0 is exact. It is probably better
to modify the definition of H, (F®G) to be the homology groups of the sequence
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- —F,®G—F,®G— 0, omitting the term H® G which can be regarded as a kind
of augmentation. With this revised definition, Lemma 3A.1 then gives an isomorphism
Tory(H,G) = H®G.

We should remark that Tor(H, G) is a functor of both G and H: Homomorphisms
«:H—H' and B:G— G  induce homomorphisms «, :Tor(H,G)—Tor(H',G) and
B, :Tor(H,G)—Tor(H,G"), satisfying (ax«'), = o, &, (BB'), = B.B,,and 1, = 1.
The induced map «, was constructed in the proof of Lemma 3A.2, while for S the
construction of B, is obvious.

Before going into calculations of Tor(H, G) let us finish analyzing the earlier exact
sequence (iv). Recall that we have a chain complex C of free abelian groups, with
homology groups denoted H,,(C), and tensoring C with G gives another complex
C ® G whose homology groups are denoted H,, (C;G). The following result is known
as the universal coefficient theorem for homology since it describes homology with
arbitrary coefficients in terms of homology with the ‘universal’ coefficient group Z.

Theorem 3A.3. If C is a chain complex of free abelian groups, then there are natural
short exact sequences

0—H,(C)®G— H,(C;G) — Tor(H,_,(C),G) —0
for all n and all G, and these sequences split, though not naturally.

Naturality means that a chain map C — C’ induces a map between the correspond-
ing short exact sequences, with commuting squares.

Proof: The exact sequence in question is (iv) since we have shown that we can identify
Coker(i, ® 1) with H,(C)®G and Keri, _, with Tor(H,,_,(C),G). Verifying the nat-
urality of this sequence is a mental exercise in definition-checking, left to the reader.

The splitting is obtained as follows. We observed earlier that the short exact se-
quence 0— Z, — C, — B,,_; — 0 splits, so there is a projection p: C,, — Z,, restricting
to the identity on Z,,. The map p gives an extension of the quotient map Z,, — H,,(C)
to ahomomorphism C,, — H,,(C). Letting n vary, we then have a chainmap C— H(C)
where the groups H,, (C) are regarded as a chain complex with trivial boundary maps,
so the chain map condition is automatic. Now tensor with G to get a chain map
C®G—H(C)®G. Taking homology groups, we then have induced homomorphisms
H, (C;G)—H,(C)®G since the boundary maps in the chain complex H(C)® G are
trivial. The homomorphisms H,,(C; G)— H,,(C) ® G give the desired splitting since at
the level of chains they are the identity on cycles in C, by the definition of p. O

Corollary 3A.4. For each pair of spaces (X, A) there are split exact sequences
0—H,(X,A)®G— H,(X,A;G) — Tor(H,_,(X,A),G) —0
for all n, and these sequences are natural with respect to maps (X,A)— (Y,B). O

The splitting is not natural, for if it were, a map X—Y that induced trivial
maps H,(X)—H,(Y) and H,_;(X)—H,_;(Y) would have to induce the trivial map
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H,(X;G)—H,(Y;G) for all G, but in Example 2.51 we saw an instance where this
fails, namely the quotient map M (Z,,,n) —S™ with G = Z,,.

The basic tools for computing Tor are given by:

Proposition 3A.5.

(1) Tor(A,B) =~ Tor(B,A).

(2) Tor(p;A;,B) = P;Tor(A;,B).

(3) Tor(A,B) =0 if A or B is free, or more generally torsionfree.

(4) Tor(A,B) ~ Tor(T(A),B) where T(A) is the torsion subgroup of A.

(5) Tor(Z,,A) ~ Ker(A—> A).

(6) For each short exact sequence 0— B— C — D — 0 there is a naturally associated
exact sequence

0—Tor(A,B) —Tor(A,C)—Tor(A,D) >A®B—>A®C—A®D —0

Proof: Statement (2) is easy since one can choose as a free resolution of @; A; the
direct sum of free resolutions of the A;’s. Also easy is (5), which comes from tensoring
the free resolution 0—7 —»7—7,,—0 with A.

For (3), if A is free, it has a free resolution with F,, = 0 for n = 1, so Tor(A,B) =0
for all B. On the other hand, if B is free, then tensoring a free resolution of A with
B preserves exactness, since tensoring a sequence with a direct sum of Z’s produces
just a direct sum of copies of the given sequence. So Tor(A, B) = 0 in this case too.
The generalization to torsionfree A or B will be given below.

For (6), choose a free resolution 0— F; —F;— A—0 and tensor with the given
short exact sequence to get a commutative diagram

0—F,®B —F,®C —F,®D —0
| l |
0 —F,®B ——F®C ——F,®D——0
The rows are exact since tensoring with a free group preserves exactness. Extending
the three columns by zeros above and below, we then have a short exact sequence
of chain complexes whose associated long exact sequence of homology groups is the
desired six-term exact sequence.

To prove (1) we apply (6) to a free resolution 0— F; — F;— B— 0. Since Tor(A, F;)
and Tor(A, Fy) vanish by the part of (3) which we have proved, the six-term sequence
in (6) reduces to the first row of the following diagram:

0 —> Tor(A,B) — A®F, —A®F,—A®B—0
0—>T0r(B,A)—>Fli>A FOéA BéA—>O

The second row comes from the definition of Tor(B, A). The vertical isomorphisms

come from the natural commutativity of tensor product. Since the squares commute,
there is induced a map Tor(A, B) —Tor(B, A), which is an isomorphism by the five-
lemma.
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Now we can prove the statement (3) in the torsionfree case. For a free resolution
0 — F, =% F, — A — 0 we wish to show that @ e 1:F, ® B—F,®B is injective
if B is torsionfree. Suppose > ; x; ®b; lies in the kernel of @ © 1. This means that
> @(x;)®eb; can be reduced to 0 by a finite number of applications of the defining
relations for tensor products. Only a finite number of elements of B are involved in
this process. These lie in a finitely generated subgroup B, C B, so >; x; ®b; lies in
the kernel of @ ® 1:F, ® By— F,®B,,. This kernel is zero since Tor(A, B;) = 0, as B,
is finitely generated and torsionfree, hence free.

Finally, we can obtain statement (4) by applying (6) to the short exact sequence
0—-T(A)—A—A/T(A)—0 since A/T(A) is torsionfree. O

In particular, (5) gives Tor(Z,,,Z,,) = Z, where g is the greatest common divisor
of m and n. Thus Tor(Z,,,7,) is isomorphic to 7Z,, ®Z,,, though somewhat by acci-
dent. Combining this isomorphism with (2) and (3) we see that for finitely generated
A and B, Tor(A, B) is isomorphic to the tensor product of the torsion subgroups of
A and B, or roughly speaking, the common torsion of A and B. This is one reason
for the ‘Tor’ designation, further justification being (3) and (4).

Homology calculations are often simplified by taking coefficients in a field, usually
Q or Z,, for p prime. In general this gives less information than taking Z coefficients,
but still some of the essential features are retained, as the following result indicates:

Corollary 3A.6. () H,(X;Q) =~ H,(X;Z2)®Q, so when H,(X;Z) is finitely gen-
erated, the dimension of H,(X;Q) as a vector space over Q equals the rank of
H,(X;Z).
(b) If H,(X;Z) and H,,_,(X;Z) are finitely generated, then for p prime, H,(X;Z,)
consists of

() a Z, summand for each Z summand of H, (X;Z),

(i) a Zp summand for each Zpk summand in H,(X;72), k=1,

(iii) a Zp summand for each Zpk summandin H, (X;Z), k= 1. O

Even in the case of nonfinitely generated homology groups, field coefficients still
give good qualitative information:

Corollary 3A.7. (a) ﬁn(X;Z) =0 forallm iffﬁn(X;Q) =0 and ﬁn(X;Z ) =0 for
all n and all primes p.

(b) A map f:X—Y induces isomorphisms on homology with 7 coefficients iff it
induces isomorphisms on homology with Q and Z,, coefficients for all primes p.

Proof: Statement (b) follows from (a) by passing to the mapping cone of f. The
universal coefficient theorem gives the ‘only if’ half of (a). For the ‘if’ implication it
suffices to show that if an abelian group A is such that A® Q = 0 and Tor(A,Z,) =0
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for all primes p, then A = 0. For the short exact sequences 0—Z £, Z—17,—0 and
0—7Z—Q—Q/Z— 0, the six-term exact sequences in (6) of the proposition become

0— Tor(A,2,) > A-t>A—A®Z, —0
0— Tor(A,Q/Z) > A— A®Q — A®Q/Z— 0

If Tor(A,Z,) = 0 for all p, then exactness of the first sequence implies that A AN\
is injective for all p, so A is torsionfree. Then Tor(A,Q/Z) = 0 by (3) or (4) of the
proposition, so the second sequence implies that A— A® Q is injective, hence A =0
if AeQ =0. |

The algebra by means of which the Tor functor is derived from tensor products
has a very natural generalization in which abelian groups are replaced by modules
over a fixed ring R with identity, using the definition of tensor product of R-modules
givenin §3.2. Free resolutions of R-modules are defined in the same way as for abelian
groups, using free R-modules, which are direct sums of copies of R. Lemmas 3A.1 and
3A.2 carry over to this context without change, and so one has functors Torﬁ(A, B).
However, it need not be true that Torf(A,B) = 0 for n > 1. The reason this was
true when R = Z was that subgroups of free groups are free, but submodules of free
R-modules need not be free in general. If R is a principal ideal domain, submodules
of free R-modules are free, so in this case the rest of the algebra, in particular the
universal coefficient theorem, goes through without change. When R is afield F, every
module is free and Tori(A,B) = 0 for n > 0 via the free resolution 0—A—A—0.
Thus H,,(C®:G) = H,,(C) ®:G if F is a field.

Exercises

1. Use the universal coefficient theorem to show that if H, (X;Z) is finitely generated,
so the Euler characteristic X (X) = >, (—-1)"rank H, (X;Z) is defined, then for any
coefficient field F we have X (X) = > ,(-1)"dimH,,(X;F).

2. Show that Tor(A,Q/Z) is isomorphic to the torsion subgroup of A. Deduce that
A is torsionfree iff Tor(A,B) = 0 for all B.

3. Show that if H™(X;Q) and H"(X;Z,) are zero for all n and all primes p, then
ﬁn(X;Z) =0 for all n, and hence H"(X:G) = 0 for all G and n.

4. Show that ® and Tor commute with direct limits: (li_II}Aa) ®B = hiq(Ao(@)B) and
Tor(im A, B) = limTor(A,, B).

5. From the fact that Tor(A,B) = 0 if A is free, deduce that Tor(A,B) = 0 if A
is torsionfree by applying the previous problem to the directed system of finitely
generated subgroups A, of A.

6. Show that Tor(A,B) is always a torsion group, and that Tor(A,B) contains an
element of order n iff both A and B contain elements of order n.



268 | Chapter 3 Cohomology

—_—T

3.B The General Kiinneth Formula

Kiinneth formulas describe the homology or cohomology of a product space in

terms of the homology or cohomology of the factors. In nice cases these formulas take
the form H, (XX Y;R) ~ H (X;R)®H_(Y;R) or H*(XXY;R) ~ H*(X;R)® H*(Y;R)
for a coefficient ring R. For the case of cohomology, such a formula was given in
Theorem 3.16, with hypotheses of finite generation and freeness on the cohomology
of one factor. To obtain a completely general formula without these hypotheses it
turns out that homology is more natural than cohomology, and the main aim in this
section is to derive the general Kiinneth formula for homology. The new feature of
the general case is that an extra Tor term is needed to describe the full homology of
a product.

The Cross Product in Homology

A major component of the Kiinneth formula is a cross product map
H;(X;R)xH,(Y;R) —— H;, (XX Y;R)

There are two ways to define this. One is a direct definition for singular homology,
involving explicit simplicial formulas. More enlightening, however, is the definition in
terms of cellular homology. This necessitates assuming X and Y are CW complexes,
but this hypothesis can later be removed by the technique of CW approximation in
§4.1. We shall focus therefore on the cellular definition, leaving the simplicial defini-
tion to later in this section for those who are curious to see how it goes.

The key ingredient in the definition of the cellular cross product will be the fact
that the cellular boundary map satisfies d(eixej ) = delxel + (—l)ieixdej . Implicit
in the right side of this formula is the convention of treating the symbol X as a
bilinear operation on cellular chains. With this convention we can then say more
generally that d(axb) = daxb + (—1)ia>< db whenever a is a cellular i-chain and
b is a cellular j-chain. From this formula it is obvious that the cross product of two
cycles is a cycle. Also, the product of a boundary and a cycle is a boundary since
daxb =d(axb) if db = 0, and similarly axdb = (—l)id(ax b) if da = 0. Hence
there is an induced homomorphism H;(X;R) % H; (Y;R) —H; (XXY;R),whichis by
definition the cross product in cellular homology. Since it is bilinear, it could also
be viewed as a homomorphism H;(X;R) ®RHJ-(Y; R) —»Hi+j(X>< Y:R). In either form,
this cross product turns out to be independent of the cell structures on X and Y.

Our task then is to express the boundary maps in the cellular chain complex
C,(XxY) for XxY in terms of the boundary maps in the cellular chain complexes
C,(X) and C,(Y). For simplicity we consider homology with Z coefficients here,
but the same formula for arbitrary coefficients follows immediately from this special
case. With Z coefficients, the cellular chain group C;(X) is free with basis the i-cells
of X, but there is a sign ambiguity for the basis element corresponding to each cell e,
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namely the choice of a generator for the Z summand of H;(X Lxih corresponding
to e’. Only when i = 0 is this choice canonical. We refer to these choices as ‘choosing
orientations for the cells.” A choice of such orientations allows cellular i-chains to be
written unambiguously as linear combinations of i-cells.

The formula d(ei x el ) = delxel + (—l)iei x de’ is not completely canonical since
it contains the sign (—1)! but not (-1)7. Evidently there is some distinction being
made between the two factors of e'xe’. Since the signs arise from orientations, we
need to make explicit how an orientation of cells e! and e’ determines an orientation
of e'xe’. Via characteristic maps, orientations can be obtained from orientations of
the domain disks of the characteristic maps. It will be convenient to choose these
domains to be cubes since the product of two cubes is again a cube. Thus for a cell e,
we take a characteristic map ®,:1 i X where I' is the product of i intervals [0,1].
An orientation of I’ is a generator of H;(I i 9I'), and the image of this generator under
., gives an orientation of ef,(. We can identify Hi(Ii,ali) with Hi(Ii,Ii — {x}) for
any point x in the interior of I', and then an orientation is determined by a linear
embedding A'—1I' with x chosen in the interior of the image of this embedding.
The embedding is determined by its sequence of vertices v, ---,v;. The vectors
v, -V, +,V;—V, are linearly independent in Ii, thought of as the unit cube in [R{i, SO
an orientation in our sense is equivalent to an orientation in the sense of linear algebra,
that is, an equivalence class of ordered bases, two ordered bases being equivalent if
they differ by a linear transformation of positive determinant. (An ordered basis can
be continuously deformed to an orthonormal basis, by the Gram-Schmidt process,
and two orthonormal bases are related either by a rotation or a rotation followed by a
reflection, according to the sign of the determinant of the transformation taking one
to the other.)

With this in mind, we adopt the convention that an orientation of I'x I/ = 't/ is
obtained by choosing an ordered basis consisting of an ordered basis for I i followed
by an ordered basis for I/. Notice that reversing the orientation for either I or I/
then reverses the orientation for 1'*/ , so all that really matters is the order of the two
factors of I'xI7.

Proposition 3B.1. The boundary map in the cellular chain complex C,(XXY) is
determined by the boundary maps in the cellular chain complexes C,(X) and C,(Y)
via the formula d(eixej) =delxel + (—l)ieixdej.

Proof: Let us first consider the special case of the cube I". We give I the CW structure
with two vertices and one edge, so the i" copy of T has a 1-cell e; and 0-cells 0; and
1;, with de; = 1; — 0;. The n-cell in the product I" is e; x - -- Xe,,, and we claim that
the boundary of this cell is given by the formula

(%) d(eyx - xey) = > (1) ey x -+ xde;x -+ xe,
i
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This formula is correct modulo the signs of the individual terms e; X -+ X0;X -+ Xe,
and e; x --- x1;x --- xe, since these are exactly the (n — 1)-cells in the boundary
sphere 91" of I"™. To obtain the signs in (%), note that switching the two ends of an
I factor of I"™ produces a reflection of 91", as does a transposition of two adjacent
I factors. Since reflections have degree —1, this implies that () is correct up to an
overall sign. This final sign can be determined by looking at any term, say the term
0;xeyx -+ xe,, which has a minus sign in (*). To check that this is right, consider
the n-simplex [vg,---,v, ] with v, at the origin and v, the unit vector along the
kt" coordinate axis for k > 0. This simplex defines the ‘positive’ orientation of I" as
described earlier, and in the usual formula for its boundary the face [vg, v,, -+, v,],
which defines the positive orientation for the face 0, xe, x --- xe,, of I'", has a minus
sign.

If we write I" = I'xI/ with i + j = n and we set e’ = e;x --- xe; and e’ =
e;.1X -+ xXe,, then the formula (%) becomes d(eixej) = delxel + (—l)ieixdej.
We will use naturality to reduce the general case of the boundary formula to this
special case. When dealing with cellular homology, the maps f:X—Y that induce
chain maps f, :C,(X)— C,(Y) of the cellular chain complexes are the cellular maps,
taking X" to Y" for all n, hence (X", X" 1) to (Y",Y"!). The naturality statement
we want is then:

Lemma 3B.2. For cellular maps f:X—Z7Z and g:Y —W, the cellular chain maps
o iCou(X)—=Co(2), gy :Cu(Y)—=Co(W),and (fXg),:Cou (XXY)—>Co (ZXW) are
related by the formula (fxXg), = fxX9x-

Proof: The relation (fxg), = f*xg* means that if f, (e} ) = 2y Myye ;, and if
g*(e‘B 25n55e5, then (fxg), (e, xeﬁ) = Zy(;maynﬁ(;(e ><e5) The coefficient
My, is the degree of the composition f,: St Xxi/xtt 57t/ 7i71 - 8 where the
first and third maps are induced by characteristic maps for the cells ea and ey, and the
middle map is induced by the cellular map f. With the natural choices of basepoints in
these quotient spaces, f(xy is basepoint-preserving. The ngs’s are obtained similarly
from maps gpg;: SJ—>SJ For fxg, the map (f XD apys: :§1 > §1J whose degree
is the coefficient of e! ><e5 in (fxg),(ek xeB) is obtained from the product map
Sfoy*x9ps S XSJ—>S‘><SJ by collapsing the (i + j — 1)-skeleton of S'x$’ to a point.
In other words, (fxXg)qg,ys is the smash product map fy, A ggs- What we need
to show is the formula deg(f A g) = deg(f) deg(g) for basepoint-preserving maps
f:S'—Stand g:S'— 8.

Since f A g is the composition of f A 1 and 1 A g, it suffices to show that
deg(fAll) = deg(f) and deg(ll Ag) = deg(g). We do this by relating smash products
to suspension. The smash product X AS! canbe viewed as X xI/(X x dIu {xo}xI),so
itis the reduced suspension XX, the quotient of the ordinary suspension SX obtained
by collapsing the segment {x,}xI to a point. If X is a CW complex with x, a 0-cell,
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the quotient map SX — X AS! induces an isomorphism on homology since it collapses
a contractible subcomplex to a point. Taking X = S', we S(SY) SF, g (s
have the commutative diagram at the right, and from the
induced commutative diagram of homology groups H;.; we Ging! FAl Ging!
deduce that Sf and f A 1 have the same degree. Since

suspension preserves degree by Proposition 2.33, we conclude that deg(f A 1) =
deg(f). The 1 in this formula is the identity map on S ! and by iteration we obtain
the same result for 1 the identity map on S’ since S’ is the smash product of j
copies of S 1 This implies also that deg(ll A g) = deg(g) since a permutation of

coordinates in S**/ does not affect the degree of maps S/ — /. ]

Now to finish the proof of the proposition, let ®:1'— X' and ¥:I’ — Y’ be char-
acteristic maps of cells e, ¢ X and eé C Y. The restriction of ® to dI' is the at-
taching map of ej,. We may perform a preliminary homotopy of this attaching map
dI' - X! to make it cellular. There is no need to appeal to the cellular approxima-
tion theorem to do this since a direct argument is easy: First deform the attaching
map so that it sends all but one face of I' to a point, which is possible since the union
of these faces is contractible, then do a further deformation so that the image point
of this union of faces is a 0-cell. A homotopy of the attaching map oI ‘X! does
not affect the cellular boundary defx, since defx is determined by the induced map
H,_, (aIi) —H, (Xi’l) —H, (Xi’l, Xi’z). So we may assume & is cellular, and like-
wise ¥, hence also ®xV¥. The map of cellular chain complexes induced by a cellular
map between CW complexes is a chain map, commuting with the cellular boundary
maps.

If e! is the i-cell of I' and e’ the Jj-cell of I, then <I>*(ei) = efx, ‘I’*(ej) = eé,

and (@x‘l’)*(eixej) = efxxeé, hence

dlelxe}) = d((@xY), (e'xel))
= (@x‘l’)*d(eixej) since (dx V), is a chain map
= (CIJX‘I’)*(deixej + (—l)ieixdej) by the special case
=d,(de')x¥, (/) + (-1)'®, (e')x ¥, (de’) by the lemma
=do, (e )x ¥, (/) + (-1)'®, (') xd¥, (e/)  since ®, and ¥, are
_ , chain maps
= dejxep + (-1)'el x deg

which completes the proof of the proposition. =]

Example 3B.3. Consider X xS k where we give S k jts usual CW structure with two
cells. The boundary formula in C, (X xS¥) takes the form d(axb) = daxb since
d =0in C*(Sk). So the chain complex C, (X><Sk) is just the direct sum of two
copies of the chain complex C, (X), one of the copies having its dimension shifted
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upward by k. Hence H, (X X Sk;Z) ~ H,(X;Z)®H,_;(X;Z) for all i. In particular,
we see that all the homology classes in X xS k are cross products of homology classes
in X and S*.

Example 3B.4. More subtle things can happen when X and Y both have torsion in
their homology. To take the simplest case, let X be S ! with a cell e? attached by a
map st—gsl of degree m, so H,(X;Z) = Z,, and H;(X;Z) = 0 for i > 1. Similarly,
let Y be obtained from S' by attaching a 2-cell by a map of degree n. Thus X and
Y each have CW structures with three cells and so XxY ,

e ° o — o

has nine cells. These are indicated by the dots in the
diagram at the right, with X in the horizontal direction ln l_n ln

1
and Y in the vertical direction. The arrows denote the = € * * *
nonzero cellular boundary maps. For example the two m
e0 . o — o
arrows leaving the dot in the upper right corner indi-
el el e?

cate that 8(62 xe?) = m(e1 ><e2) + n(e2 xel). Obviously
H,(XxY;Z) is Z,,®7,. In dimension 2, Ker 0 is generated by e' xe', and the image
of the boundary map from dimension 3 consists of the multiples (fm —kn) (e1 X el) .
These form a cyclic group generated by g(e!xe!) where g is the greatest common
divisor of m and n, so H,(XXY;Z) = Z,.-In dimension 3 the cycles are the multiples
of (m/q)(e!x e?) + (n/q) (e’xe'), and the smallest such multiple that is a boundary
is q[(m/q)(elxez) + (n/q)(ezxel)] = m(elxez) + n(ezxel), so H3(XXY;Z) = Z,.
Since X and Y have no homology above dimension 1, this 3-dimensional homol-
ogy of XxXY cannot be realized by cross products. As the general theory will show,
H,(XxY;Z) is H,(X;Z) ®H,(Y;Z) and H;(XxY;Z) is Tor(H, (X;Z),H,(Y;Z)).
This example generalizes easily to higher dimensions, with X = S U e!"! and
Y =S/ ue/!, the attaching maps having degrees m and n, respectively. Essentially

the same calculation shows that XxY has both H;,; and H,, ;,; isomorphic to Z,.

We should say a few words about why the cross product is independent of CW
structures. For this we will need a fact proved in the next chapter in Theorem 4.8, that
every map between CW complexes is homotopic to a cellular map. As we mentioned
earlier, a cellular map induces a chain map between cellular chain complexes. It is
easy to see from the equivalence between cellular and singular homology that the
map on cellular homology induced by a cellular map is the same as the map induced
on singular homology. Now suppose we have cellular maps f:X—Z and g:Y —W.
Then Lemma 3B.2 implies that we have a commutative diagram

H{(X;Z) x H(Y;Z) —>— H;,;(X X Y;Z)
lf*xg* l(fxg)*

Now take Z and W to be the same spaces as X and Y but with different CW structures,
and let f and g be cellular maps homotopic to the identity. The vertical maps in the
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diagram are then the identity, and commutativity of the diagram says that the cross
products defined using the different CW structures coincide.

Cross product is obviously bilinear, or in other words, distributive. It is not hard
to check that it is also associative. What about commutativity? If T:XXY—-YXxX
is transposition of the factors, then we can ask whether T, (axb) equals bxa. The
only effect transposing the factors has on the definition of cross product is in the
convention for orienting a product I' x I/ by taking an ordered basis in the first factor
followed by an ordered basis in the second factor. Switching the two factors can be
achieved by moving each of the i coordinates of I ¥ past each of the coordinates of
I/, This is a total of i j transpositions of adjacent coordinates, each realizable by a
reflection, so a sign of (—l)ij is introduced. Thus the correct formula is T, (axb) =
(-1)”bxa for a € Hy(X) and b € H(Y).

The Algebraic Kiinneth Formula

By adding together the various cross products we obtain a map
@;(H;(X;7)®H,_;(Y;7)) — H, (XX Y;2)

and it is natural to ask whether this is an isomorphism. Example 3B.4 above shows
that this is not always the case, though it is true in Example 3B.3. Our main goal
in what follows is to show that the map is always injective, and that its cokernel is
@, Tor(H;(X;7),H,,_;_,(Y;Z)). More generally, we consider other coefficients besides
Z and show in particular that with field coefficients the map is an isomorphism.

For CW complexes X and Y, the relationship between the cellular chain com-
plexes C,(X), C,(Y),and C, (X XxY) canbe expressed nicely in terms of tensor prod-
ucts. Since the n-cells of Xx Y are the products of i-cells of X with (n — i)-cellsof Y,
we have C,(XxY) ~ @,(C;(X)®C,,_;(Y)),with e'xe’ corresponding to e'®e’. Un-
der this identification the boundary formula of Proposition 3B.1 becomes d(e‘®e’/) =
detee’ + (—1)'e' @ de’. Our task now is purely algebraic, to compute the homology
of the chain complex C, (X xY) from the homology of C, (X) and C,(Y).

Suppose we are given chain complexes C and C’ of abelian groups C,, and C,,,
or more generally R-modules over a commutative ring R. The tensor product chain
complex C®,C’ is then defined by (C®xC"),, = P,(C; ®xC,,_;), with boundary maps
given by d(cec’) = dcec’ + (-1)'cedc’ for c € C; and ¢’ € C),_;. The sign (-1)°
guarantees that 8° = 0 in C®,C’, since

*(ceoc’) =d(dcoc’ + (-1)icedc)
=0%cec + (-1)"acedc + (-1)dcedc’ + (-1)ic®d’c’ =0
From the boundary formula d(cec¢’) = dcec’ + (—1)'cedc’ it follows that the tensor
product of cycles is a cycle, and the tensor product of a cycle and a boundary, in either

order, is a boundary, just as for the cross product defined earlier. So there is induced a
natural map on homology groups H;(C) ®;H,,_;(C")—H, (C®zC"). Summing over i
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then gives a map @; (H;(C) ®zH,,_;(C")) —H, (C®zC"). This figures in the following
algebraic version of the Kiinneth formula:

Theorem 3B.5. If R is a principal ideal domain and the R-modules C; are free, then
for each n there is a natural short exact sequence

0_’®1(H1(C) ®RH‘VL—i(C/)) _’Hn(C ®RC,) _’®i (TOIR (Hi(C)lH‘VL—i—l(C,)) —0
and this sequence splits.

This is a generalization of the universal coefficient theorem for homology, which
is the case that C’ consists of just the coefficient group G in dimension zero. The
proof will also be a natural generalization of the proof of the universal coefficient
theorem.

Proof: First we do the special case that the boundary maps in C are all zero, so
H;(C) = C;. In this case d(cec’) = (-1)'c®dc’ and the chain complex C®yC’ is
simply the direct sum of the complexes C; ®,C’, each of which is a direct sum of copies
of C" since C; is free. Hence H,(C;®xC’) ~ C;®xH, _;(C") = H;(C)®xH,_;(C").
Summing over i yields an isomorphism H, (C®zC") ~ @;(H;(C) ®;H,,_;(C")), which
is the statement of the theorem since there are no Tor terms, H;(C) = C; being free.

In the general case, let Z; € C; and B; C C; denote kernel and image of the
boundary homomorphisms for C. These give subchain complexes Z and B of C
with trivial boundary maps. We have a short exact sequence of chain complexes
0—Z—C—B—0 made up of the short exact sequences 0— Z;,—C; N B, _,—0
each of which splits since B;_; is free, being a submodule of C;_; which is free by
assumption. Because of the splitting, when we tensor 0—Z—C—B—0 with C’
we obtain another short exact sequence of chain complexes, and hence a long exact
sequence in homology

- _>H1’L(Z®RC,) _>Hn(C®RC,) _’Hn_l(B®RC,) _>H7L—1(Z®RC,) —_—>

where we have H,_, (B®;C’) instead of the expected H,,(B®C’) since 0:C— B de-
creases dimension by one. Checking definitions, one sees that the ‘boundary’ map
H,_,(B&xC')—H,_ ,(Z®C") in the preceding long exact sequence is just the map
induced by the natural map B®yC'— Z®yC’ coming from the inclusion B C Z.

Since Z and B are chain complexes with trivial boundary maps, the special case
at the beginning of the proof converts the preceding exact sequence into

o (28 Hyy (C)) — H,y (CO,CT) — @y (B & H,y i 1(C')) =
@i(Z;8Hy_ i 1(C)) —---
So we have short exact sequences

0 — Cokeri,, — H,(C®yC") —Keri,_;, — 0
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where Cokeri, = @;(Z;®xH,_;(C"))/Imi,, and this equals @, (H;(C) ®zH,,_;(C"))
by Lemma 3A.1. It remains to identify Keri,,_, with @;Torg(H;(C),H,_;(C")).

By the definition of Tor, tensoring the free resolution 0—B;—Z;—H;(C)—0
with H,_;(C") yields an exact sequence

0 —>TOI'R (HI(C)’anl(C,)) _>Bi®RHn7i(C,) — Zi®RH1’L*i(C,) -
H,(C)®xH, _(C') —0

Hence, summing over i, Keri, = @,;Torg (H;(C),H,_;(C")).

Naturality should be obvious, and we leave it for the reader to fill in the details.

We will show that the short exact sequence in the statement of the theorem splits
assuming that both C and C’ are free. This suffices for our applications. For the
extra argument needed to show splitting when C’ is not free, see the exposition in
[Hilton & Stammbach 1970].

The splitting is via a homomorphism H,, (C®zC")— @, (H;(C) ®;H,,_;(C")) con-
structed in the following way. As already noted, the sequence 0—Z;,—C;—B;_; —0
splits, so the quotient maps Z; — H;(C) extend to homomorphisms C;— H;(C). Sim-
ilarly we obtain C;— H;(C") if C’ is free. Viewing the sequences of homology groups
H;(C) and HJ(C') as chain complexes H(C) and H(C’) with trivial boundary maps,
we thus have chain maps C— H(C) and C'— H(C'), whose tensor product is a chain
map C®zC'— H(C)®zxH(C'). The induced map on homology for this last chain map
is the desired splitting map since the chain complex H(C) ®zH(C ") equals its own
homology, the boundary maps being trivial. o

The Topological Kiinneth Formula

Now we can apply the preceding algebra to obtain the topological statement we
are looking for:

Theorem 3B.6. If X and Y are CW complexes and R is a principal ideal domain,
then there are natural short exact sequences

0— P,;(H;(X;R)®xH,,_;(Y;R)) — H,(XxXY;R) —
@, Torg (H;(X;R),H,_; ;(Y;R)) —0

and these sequences split.

Naturality means that maps X— X' and Y—Y  induce a map from the short
exact sequence for X xY to the corresponding short exact sequence for X' xY’, with
commuting squares. The splitting is not natural, however, as an exercise at the end
of this section demonstrates.

Proof: When dealing with products of CW complexes there is always the bothersome
fact that the compactly generated CW topology may not be the same as the product
topology. However, in the present context this is not a real problem. Since the two
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topologies have the same compact sets, they have the same singular simplices and
hence the same singular homology groups.

Let C = C,(X;R) and C' = C,.(Y;R), the cellular chain complexes with coeffi-
cientsin R. Then C®,C’ = C, (XX Y;R) by Proposition 3B.1, so the algebraic Kiinneth
formula gives the desired short exact sequences. Their naturality follows from natu-
rality in the algebraic Kiinneth formula, since we can homotope arbitrary maps X — X’
and Y—Y’ to be cellular by Theorem 4.8, assuring that they induce chain maps of
cellular chain complexes. a

With field coefficients the Kiinneth formula simplifies because the Tor terms are
always zero over a field:

Corollary 3B.7. If F isafieldand X and Y are CW complexes, then the cross product
map h:@;(H;(X;F)®pH,_;(Y;F)) — H,(XXY;F) is an isomorphism for all n. O

There is also a relative version of the Kiinneth formula for CW pairs (X,A) and
(Y, B). This is a split short exact sequence
0— ®;(H;(X,A;R)®H,_;(Y,B;R)) — H,(XXY,AXY UXXB;R) —
@, Torg (H;(X,A;R),H,,_;_1(Y,B;R)) — 0
for R a principal ideal domain. This too follows from the algebraic Kiinneth formula

since the isomorphism of cellular chain complexes C, (XX Y) ~ C, (X) ®C, (Y) passes
down to a quotient isomorphism

C.(XXY)/C,(AXY UXXB) ~ C,(X)/C4(A)8C,(Y)/C, (B)

since bases for these three relative cellular chain complexes correspond bijectively
with the cells of (X — A)x(Y —B), X — A, and Y — B, respectively.

As a special case, suppose A and B are basepoints x, € X and y, € Y. Then
the subcomplex AXY U XX B can be identified with the wedge sum X v Y and the
quotient XX Y /X v Y is the smash product X A Y. Thus we have a reduced Kiinneth
formula

0— @;(H,(X;R)®xH, ,(Y;R)) — H, (X AY;R) —

@, Torg (H;(X;R),H, ; (Y;R)) —0

If we take Y = S¥ for example, then X A S k' is the k-fold reduced suspension of X,
and we obtain isomorphisms ﬁn(X 1 Z) ~ ﬁn k(XA sk.z). More generally, by taking
Y to be a Moore space M (G, k) and then applying the universal coefficient theorem
we obtain:

This says that homology with arbitrary coefficients is obtainable from homology
with Z coefficients by a geometric construction as well as by the algebra of tensor

Corollary 3B.2. There are natural isomorphisms ﬁn(X; G) = FNI,Hk(X AM(G,k);Z)
for all CW complexes X and abelian groups G. O
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products. For general homology theories this formula can be used as a definition of
homology with coefficients.

The Kiinneth formula and the universal coefficient theorem can be combined
to give a more concise formula H, (XXY;G) = @iHi (X;H,_;(Y;G)), at least when
G = Z. In fact, with a little more algebra one can show that this formula is valid for
arbitrary coefficient groups G; see [Hilton & Wylie 1967], p. 227, or [Spanier 1966],
p- 235. However the naturality of this isomorphism is problematic since it uses the
splittings in the Kiinneth formulas and universal coefficient theorems.

One might wonder about a cohomology version of the Kiinneth formula. Tak-
ing coefficients in a field F and using the natural isomorphism Hom(A®B,(C) =
Hom (A, Hom(B, C)), the Kiinneth formula for homology and the universal coefficient
theorem give isomorphisms

H™(XxY;F) ~ Homy(H, (XX Y;F),F) ~ @,Hom (H,(X;F)®H,_;(Y;F),F)
~ @;Hom (H;(X; F),Homg(H,_;(Y;F),F))
~ @;Hom; (H;(X;F),H"'(Y;F))
~ @;H'(XGH" ' (Y;F))

More generally, there are isomorphisms H" (XX Y;G) = EBi Hi(X;H"‘i(Y; G)) for any
coefficient group G; see [Hilton & Wylie 1967], p. 227. However, in practice it usually
suffices to apply the Kiinneth formula for homology and the universal coefficient
theorem for cohomology separately. Also, Theorem 3.16 shows that with stronger
hypotheses one can draw stronger conclusions using cup products.

The Simplicial Cross Product

Let us sketch how the cross product H,,(X;R)®H,,(Y;R)—H,,.,(XXY;R) can
be defined directly in terms of singular homology. What one wants is a cross prod-
uct at the level of singular chains, C,,(X;R)®C, (Y;R)—C,, ., (XXY;R). If we are
given singular simplices f:A™—X and g:A"—Y, then we have the product map
fXxg:A"x A" — X x Y, and the idea is to subdivide A™ x A" into simplices of dimen-
sion m +n and then take the sum of the restrictions of fx g to these simplices, with
appropriate signs.

In the special cases that m or n is 1 we have already seen how to subdivide
A™x A" into simplices when we constructed prism operators in §2.1. The general-
ization to A™x A" is not completely obvious, however. Label the vertices of A™ as
Vg, Vq, -+, U, and the vertices of A" as wy, Wy, -+ -, W, . Think of the pairs (i, j) with
0<i<mandO0 < j<n as the vertices of an mxn rectangular grid in R®. Let o
be a path formed by a sequence of m + n horizontal and vertical edges in this grid
starting at (0,0) and ending at (m,n), always moving either to the right or upward.
To such a path o we associate a linear map £, :A™*"—A™x A" sending the k"

vertex of A™*" to (v,

i Wj,) where (iy, ji) is the k" vertex of the edgepath . Then
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we define a simplicial cross product
Cp(X;R)®C, (Y;R) —=— C,pp iy (XX Y;R)

by the formula
fxg=> D" (Fxg)t,

where |o| is the number of squares in the grid lying below the path o. Note that
the symbol ‘ X’ means different things on the two sides of the equation. From this
definition it is a calculation to show that 0(fxg) = 0f xg+(=1)" fx dg. This implies
that the cross product of two cycles is a cycle, and the cross product of a cycle and a
boundary is a boundary, so there is an induced cross product in singular homology.

One can see that the images of the maps ¥, give a simplicial structure on A™ x A"
in the following way. We can view A™ as the subspace of R™ defined by the in-
equalities 0 < x; < --- < x,,, < 1, with the vertex v; as the point having coordi-
nates m — i zeros followed by i ones. Similarly we have A™ ¢ R" with coordinates
0 <y <+ <y, <1. The product A™xA" then consists of (m + n)-tuples
(X1, s Xy V1s -+ V) satisfying both sets of inequalities. The combined inequal-
ities 0 < x; < -+ <x,, < <+ <, <1 define a simplex A™™ in A™x A",
and every other point of A™x A" satisfies a similar set of inequalities obtained from
0<x;<--<x,, <y < =<y, <1 bya permutation of the variables ‘shuffling’
the y;’s into the x;’s. Each such shuffle corresponds to an edgepath o consisting
of a rightward edge for each x; and an upward edge for each y; in the shuffled se-
quence. Thus we have A™ x A™ expressed as the union of simplices A" indexed
by the edgepaths o. One can check that these simplices fit together nicely to form
a A-complex structure on A™ x A", which is also a simplicial complex structure. See
[Eilenberg & Steenrod 1952], p. 68. In fact this construction is sufficiently natural to
make the product of any two A-complexes into a A-complex.

The Cohomology Cross Product

In §3.2 we defined a cross product
H*X;R)xH' (Y;R) = H**'(Xx Y;R)

in terms of the cup product. Let us now describe the alternative approach in which
this cross product is defined directly via cellular cohomology, and then cup product
is defined in terms of this cross product.

The cellular definition of cohomology cross product is very much like the defini-
tion in homology. Given CW complexes X and Y, define a cross product of cellular
cochains @ € Ck(X;R) and y € Cy(Y;R) by setting

(@xw)(ekxep) = Plek)yiep)

and letting @ x ¢ take the value 0 on (k +¥)-cells of X xY which are not the product
of a k-cell of X with an £-cell of Y. Another way of saying this is to use the convention
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that a cellular cochain in C k(X :R) takes the value 0 on cells of dimension different
from k, and then we can let (@ X L/J)(e('x”xeg) = (p(e’gf)qj(eg) for all m and n.

The cellular coboundary formula §(@x @) = S@xy + (—1)*@x sy for cellular
cochains ¢ € C K(X;R) and Y e C E(Y;R) follows easily from the corresponding
boundary formula in Proposition 3B.1, namely

S(@xy)(ey xeg) = (@xy)(0(ey xep))
= (pxy)(0ey xeg + (—1)"ey x deg)
= 0@ (e )yleg) + (=1)"@(ey ) oy (ep)
= Bexy+ (- @xdy) (el xep)
where the coefficient (—1)"™ in the next-to-last line can be replaced by (-1
@el) = 0 unless k = m. From the formula d(@xXy) = SQxXyY + (—1)"q?><6np
it follows just as for homology and for cup product that there is an induced cross

)k since

product in cellular cohomology.

To show this agrees with the earlier definition, we can first reduce to the case that
X has trivial (k — 1)-skeleton and Y has trivial (£ — 1)-skeleton via the commutative
diagram

HYX/X*"R) x H'(Y/Y'";R) —=

Hk+F(X/Xk—1 % Y/Yg—l’R)

H*(X:R) x H'(Y;R) X H*'(X X Y:R)
The left-hand vertical map is surjective, so by commutativity, if the two definitions

of cross product agree in the upper row, they agree in the lower row. Next, assuming
X* 1 and Y/! are trivial, consider the commutative diagram

H*(X:R) x H'(Y;:R) —=— H""Y(X x Y;R)

l

H*(X%R) x H'(Y";R) H'(X*xY"R)

The vertical maps here are injective, X ky? being the (k + ¥)-skeleton of XX Y, so

X

it suffices to see that the two definitions agree in the lower row. We have x* =/, s¥
and Y! = VB Sg, so by restriction to these wedge summands the question is reduced
finally to the case of a product S’D‘(ng. In this case, taking R = Z, we showed in
Theorem 3.16 that the cross product in question is the map Zx7Z— 7 sending (1,1)
to =1, with the original definition of cross product. The same is obviously true using
the cellular cross product. So for R = Z the two cross products agree up to sign, and
it follows that this is also true for arbitrary R. We leave it to the reader to sort out
the matter of signs.

To relate cross product to cup product we use the diagonal map A: X— XXX,
x — (x,x). If we are given a definition of cross product, we can define cup product
as the composition

HY(X:R)x H (X:R) = H*"{(Xx X:R) =2 H**!(X:R)
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This agrees with the original definition of cup product since we have A*(axb) =
A*(pf(a) < p3 (b)) = A*(pf(a)) « A*(p) (b)) = a~ b, as both compositions p;A
and p,A are the identity map of X.

Unfortunately, the definition of cellular cross product cannot be combined with
A to give a definition of cup product at the level of cellular cochains. This is because
A is not a cellular map, so it does not induce a map of cellular cochains. It is possible
to homotope A to a cellular map by Theorem 4.8, but this involves arbitrary choices.
For example, the diagonal of a square can be pushed across either adjacent triangle. In
particular cases one might hope to understand the geometry well enough to compute
an explicit cellular approximation to the diagonal map, but usually other techniques
for computing cup products are preferable.

The cohomology cross product satisfies the same commutativity relation as for
homology, namely T*(axb) = (—l)k'gbxa for T:XxY—YxX the transposition
map, a € H*(Y;R), and b € H”(X;R). The proof is the same as for homology.
Taking X = Y and noting that AT = A, we obtain a new proof of the commutativity
property of cup product.

Exercises

1. Compute the groups H;(RP™x RP";G) and H'(RP™xRP";G) for G = Z and Z,
via the cellular chain and cochain complexes. [See Example 3B.4.]

2. Let C and C’ be chain complexes, and let I be the chain complex consisting of
Z in dimension 1 and Zx 7 in dimension 0, with the boundary map taking a gener-
ator e in dimension 1 to the difference v, — v, of generators v; of the two Z’s in
dimension 0. Show that a chain map f:I®C—C’ is precisely the same as a chain
homotopy between the two chain maps f;: C—C',c— fv;ec),i=0,1. [The chain
homotopyis h(c) = f(eec).]

3. Show that the splitting in the topological Kiinneth formula cannot be natural by con-
sidering the map f><]1:M(Zm,n)xM(Zm,n)ﬁS"“XM(Zm,n) where f collapses
the n-skeleton of M(Z,,,n) = S™ ue™"! to a point.

4. Show that the cross product of fundamental classes for closed R-orientable mani-
folds M and N is a fundamental class for M X N.

5. Show that slant products
H,(XXY;R)XH’(Y;R) — H,_;j(Y;R), (e'xe/, ) — @(e/)e’
H™(XXY;R)XH;(Y;R) = H" (Y;R), (@,e/) — (' — ple'xe))
can be defined via the indicated cellular formulas. [These ‘products’ are in some ways
more like division than multiplication, and this is reflected in the common notation
a/b for them, or a\b when the order of the factors is reversed. The first of the two

slant products is related to cap product in the same way that the cohomology cross
product is related to cup product.]
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3.C H-Spaces and Hopf Algebras

Of the three axioms for a group, it would seem that the least subtle is the existence
of an identity element. However, we shall see in this section that when topology is
added to the picture, the identity axiom becomes much more potent. To give a name
to the objects we will be considering, define a space X to be an H-space, ‘H’ standing
for ‘Hopf,’ if there is a continuous multiplication map u:X x X— X and an ‘identity’
element e € X such that the two maps X— X given by x — u(x,e) and x — p(e,x)
are homotopic to the identity through maps (X, e) — (X, e). In particular, this implies
that u(e,e) = e.

In terms of generality, this definition represents something of a middle ground.
One could weaken the definition by dropping the condition that the homotopies pre-
serve the basepoint e, or one could strengthen it by requiring that e be a strict identity,
without any homotopies. An exercise at the end of the section is to show the three
possible definitions are equivalent if X is a CW complex. An advantage of allowing
homotopies in the definition is that a space homotopy equivalent in the basepointed
sense to an H-space is again an H-space. Imposing basepoint conditions is fairly
standard in homotopy theory, and is usually not a serious restriction.

The most classical examples of H-spaces are topological groups, spaces X with
a group structure such that both the multiplication map X x X — X and the inversion

map X—X, X - x !

, are continuous. For example, the group GL, (R) of invertible
nxn matrices with real entries is a topological group when topologized as a subspace
of the n’-dimensional vector space M, (R) of all nxn matrices over R. It is an open
subspace since the invertible matrices are those with nonzero determinant, and the
determinant function M, (R)—R is continuous. Matrix multiplication is certainly
continuous, being defined by simple algebraic formulas, and it is not hard to see that
matrix inversion is also continuous if one thinks for example of the classical adjoint

formula for the inverse matrix.

Likewise GL,(C) is a topological group, as is the quaternionic analog GL, (H),
though in the latter case one needs a somewhat different justification since deter-
minants of quaternionic matrices do not have the good properties one would like.
Since these groups GL,, over R, C, and H are open subsets of Euclidean spaces, they
are examples of Lie groups, which can be defined as topological groups which are
also manifolds. The GL, groups are noncompact, being open subsets of Euclidean
spaces, but they have the homotopy types of compact Lie groups called O(n), U(n),
and Sp(n), as we shall see in §3.D.

Among the simplest H-spaces from a topological viewpoint are the unit spheres
s'in C, S$? in the quaternions H, and S’ in the octonions O. These are H-spaces
since the multiplications in these division algebras are continuous, being defined by
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polynomial formulas, and are norm-preserving, |ab| = |a||b|, hence restrict to multi-
plications on the unit spheres, and the identity element of the division algebra lies in
the unit sphere in each case. Both S' and S° are Lie groups since the multiplications
in C and H are associative and inverses exist since aa = |a|> = 1 if |a| = 1. How-
ever, S’ is not a group since multiplication of octonions is not associative. Of course
$% = {+1} is also a topological group, trivially. A famous theorem of J. F. Adams as-
serts that SO, Sl, 53, and S are the only spheres that are H-spaces; see §4.B for a
fuller discussion.

Let us describe now some associative H-spaces where inverses fail to exist. Multi-
plication of polynomials provides an H-space structure on CP” in the following way.
A nonzero polynomial a, + a,z + --- + a,,z" with coefficients a; € C corresponds
to a point (ag,--+,a,,0,---) € C* — {0}. Multiplication of two such polynomials
determines a multiplication C* — {0} x C* — {0} — C* — {0} which is associative, com-
mutative, and has an identity element (1,0,---). Since C is commutative we can
factor out by scalar multiplication by nonzero constants and get an induced product
CP* x CP” — CP” with the same properties. Thus CP” is an associative, commutative
H-space with a strict identity. Instead of factoring out by all nonzero scalars, we could
factor out only by scalars of the form pe®™*/4 with p an arbitrary positive real, k an
arbitrary integer, and g a fixed positive integer. The quotient of C* — {0} under this
identification, an infinite-dimensional lens space L® with 1 (L%) =~ Z,,is therefore
also an associative, commutative H-space. This includes RP* in particular.

The spaces J(X) defined in §3.2 are also H-spaces, with the multiplication given
by (X1, -, X)) V1, V) = (X1, Xy Y1y -+ 5 V) » Which is associative and has
an identity element (e) where e is the basepoint of X. One could describe J(X)
as the free associative H-space generated by X. There is also a commutative ana-
log of J(X) called the infinite symmetric product SP(X) defined in the following
way. Let SP,(X) be the quotient space of the n-fold product X" obtained by iden-
tifying all n-tuples (xq,---,x,) that differ only by a permutation of their coordi-
nates. The inclusion X" < X"*!, (x,---,x,) — (x,---,X,,e) induces an inclusion
SP,(X) — SP,.;, and SP(X) is defined to be the union of this increasing sequence
of SP, (X)’s, with the weak topology. Alternatively, SP(X) is the quotient of J(X)
obtained by identifying points that differ only by permutation of coordinates. The
H-space structure on J(X) induces an H-space structure on SP(X) which is commu-
tative in addition to being associative and having a strict identity. The spaces SP(X)
are studied in more detail in §4.K.

The goal of this section will be to describe the extra structure which the multi-
plication in an H-space gives to its homology and cohomology. This is of particular
interest since many of the most important spaces in algebraic topology turn out to be
H-spaces.
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Hopf Algebras

Let us look at cohomology first. Choosing a commutative ring R as coefficient
ring, we can regard the cohomology ring H* (X;R) of a space X as an algebra over R
rather than merely a ring. Suppose X is an H-space satisfying two conditions:

(1) X is path-connected, hence HO(X;R) ~ R.
(2) H™(X;R) is a finitely generated free R-module for each 7, so the cross product

H*(X;R)®H*(X;R)—H* (X x X;R) is an isomorphism.

The multiplication p:XxX—X induces a map pu*:H*(X;R)—H™*(XxX;R), and
when we combine this with the cross product isomorphism in (2) we get a map

H*(X;R) =8> H*(X;R) @ H*(X;R)

which is an algebra homomorphism since both u* and the cross product isomorphism
are algebra homomorphisms. The key property of A turns out to be that for any
x € H"(X;R), n > 0, we have

rr

Al) =xel+1leox+ Z x;®,_; where |o<3| =j= Ia}'l
O<i<n
To verify this, let i: X — X x X be the inclusion x — (x,e) for e the identity element
of X, and consider the commutative diagram

i*

H*(X;R) — X H*(X x X;R) H*(X:R)
A\; XI: / XIE

H*(X:R) ® H(X;R) 22 [*(X;R) ®, H*(e:R)

The map P is defined by commutativity, and by looking at the lower right triangle we
see that P(x®1) = o and P(x® ) = 0 if |B| > 0. The H-space property says that
ui=1,s0 PA = 1. This implies that the component of A(x) in H*(X;R) ®RH°(X;R)
is a® 1. A similar argument shows the component in H°(X;R) ®gH"(X;R) is 1® «.

We can summarize this situation by saying that H*(X;R) is a Hopf algebra, that
is, a graded algebra A = @,.,A" over a commutative base ring R, satisfying the
following two conditions:

(1) There is an identity element 1 € A° such that the map R—»AO, r+—7v-1,isan
isomorphism; one says A is connected.

(2) There is a diagonal or coproduct A:A— A® A, a homomorphism of graded al-
gebras satisfying A(«) = xel+1e &+ > o ;o X;®,_; for « € A™, n >0, and

Lo € AT,

Here and in what follows we take ® to mean ®;. The multiplicationin A® A is given

by the standard formula (xe B)(y®d) = (fl)jk((xyoa B6) where 8 € A’ and Yy € Ak,

For a general Hopf algebra the multiplication is not assumed to be either associative

X

or commutative (in the graded sense), though in the example of H*(X;R) for X an
H-space the algebra structure is of course associative and commutative.
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Example 3C.1. One of the simplest Hopf algebras is a polynomial ring R[«]. The
coproduct A(x) must equal xe1 + 1 e « since the only elements of R[«x] of lower
dimension than « are the elements of R in dimension zero, so the terms o and «,_;
in the coproduct formula A(x) = x®1 + 1@ &+ Y iy &; ® &;,_; must be zero. The
requirement that A be an algebra homomorphism then determines A completely. To
describe A explicitly we distinguish two cases. If the dimension of « isevenorif 2 =0
in R, then the multiplication in R[«x]®R[«] is strictly commutative and A(x™) =
(xel+1leo)™ =3, (’f) «'® ™ '. In the opposite case that « is odd-dimensional,
then A((xz) = (xol + 1®o()2 = «’el + 1o’ since (x®l)(1ex) = xex and
(lex)(xel) = —xe« if « has odd dimension. Thus if we set § = «, then B
is even-dimensional and we have A(a®™) = A(B") = (Bel+10p)" = >, (?)Bi o B
and A(a*™1) = A(aB™) = A@AB™) = 5 (T)aB e B + 5 (1) B e aB™ .
Example 3C.2. The exterior algebra Ag[«] on an odd-dimensional generator « is a
Hopf algebra, with A(x) = x®1+1 ® x. To verify that A is an algebra homomorphism
we must check that A(o<2) = A((x)z, or in other words, since o’ = 0, we need to see
that A(x)> = 0. As in the preceding example we have Al)? = (el +1ox) =
oCel+leand , SO A(o<)2 is indeed 0. Note that if « were even-dimensional we would
instead have A(x)? = o®®1 + 2ae & + 1 ® o>, which would be 0 in Apla]l®Agl«]
only if 2 =0 in R.

An element « of a Hopf algebra is called primitive if A(x) = x®1+1® x. As the
preceding examples illustrate, if a Hopf algebra is generated as an algebra by primitive
elements, then the coproduct A is uniquely determined by the product. This happens
in a number of interesting special cases, but certainly not in general, as we shall see.

The existence of the coproduct in a Hopf algebra turns out to restrict the multi-
plicative structure considerably. Here is an important example illustrating this:

Example 3C.3. Suppose that the truncated polynomial algebra F[«]/(«™) over a field
F is a Hopf algebra. Then « is primitive, just as it is in F[«], so if we assume either
that « is even-dimensional or that F has characteristic 2, then the relation «™ = 0
yields an equation
0=Ac") =a"ol+lea”+ > (?)ai@a(x"’i = > (?)(xi(@a"’i
O<i<n O<i<n

which implies that (Tl‘) = 0 in F for each i in the range 0 < i < n. This is impossible
if F has characteristic 0, and if the characteristic of F is p > 0 then it happens only
when 7 is a power of p. For p = 2 this was shown in the proof of Theorem 3.20, and
the argument given there works just as well for odd primes. Conversely, it is easy to
check that if F has characteristic p then F[«x]/ (a”i) is a Hopf algebra, assuming still
that « is even-dimensional if p is odd.

The characteristic 0 case of this result implies that CP" is not an H-space for
finite n, in contrast with CP® which is an H-space as we saw earlier. Similarly, taking
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F = Z,,we deduce that RP" can be an H-space only if n + 1 is a power of 2. Indeed,
RP! = S$'/+1, RP? = §%/+1, and RP” = S7/+1 have quotient H-space structures from
Sl, $3 and S7 since —1 commutes with all elements of Sl, 53, or S7. However, these
are the only cases when RP" is an H-space since, by an exercise at the end of this
section, the universal cover of an H-space is an H-space, and S 1 $3 and S’ are the
only spheres that are H-spaces, by the theorem of Adams mentioned earlier.

It is an easy exercise to check that the tensor product of Hopf algebras is again a
Hopf algebra, with the coproduct A(x e ) = A(x) ® A(B). So the preceding examples
yield many other Hopf algebras, tensor products of polynomial, truncated polynomial,
and exterior algebras on any number of generators. The following theorem of Hopf is
a partial converse:

Theorem 3C.4. If A is a commutative, associative Hopf algebra over a field F of
characteristic 0, and A" is finite-dimensional over F for each n, then A is isomor-
phic as an algebra to the tensor product of an exterior algebra on odd-dimensional
generators and a polynomial algebra on even-dimensional generators.

There is an analogous theorem of Borel when F is a finite field of characteris-
tic p. In this case A is again isomorphic to a tensor product of single-generator Hopf
algebras, of one of the following types:

= Fl[«], with o even-dimensional if p + 2.

* Ap[a] with & odd-dimensional.

. F[(x]/(a”i) , with o« even-dimensional if p + 2.
For a proof see [Borel 1953] or [Kane 1988].

Proof of 3C.4: Since A" is finitely generated over F for each n, we may choose
algebra generators x,,X,, - - - for A with x; € AXil and |x;| < |x,,,| forall i. Let A,
be the subalgebra generated by x,,---,x,. This is a Hopf subalgebra of A, that is,
A(A,) C A, ®A,, since A(x;) involves only x; and terms of smaller dimension. We
may assume x, doesnotliein A,_;. Since A is associative and commutative, there is
a natural surjection A,_; ® F[x,]— A, if |x,| iseven,or A,,_; ® Ag[x,]— A, if |x,]
is odd. By induction on n it will suffice to prove these surjections are injective. Thus
in the two cases we must rule out nontrivial relations 3; &;x}, = 0 and o+ &;x,, = 0,
respectively, with coefficients «; € A, _;.

Let I be theidealin A,, generated by x2 and the positive-dimensional elements of
A,_1,so I consists of the polynomials 3; ot;x", with coefficients «; € A,,_;, the first
two coefficients «, and «; having trivial components in A°. Note that x,, ¢ I since
elements of I having dimension |x,, | must lie in A,,_,. Consider the composition

A, —2-A,0A, —15 A ®(A,/]

with g the natural quotient map. By the definition of I, this composition gA sends
x€A, ; toxel and x,, to x,®1 + 1eXx, where X, is the image of x,, in A, /I.
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In case |x,,| is even, applying gA to a nontrivial relation > ; (xixil = 0 gives
0=Y(x;el)(x, 0l +10X,) = (3, ax;x’)el+> ic;x tex,

Since Y; o;x!, = 0, this implies that >, ix;x’ ' ®%,, is zero in the tensor product
A,®(A,/I), hence ¥;ic;x;' = 0 since x,, ¢ I implies X, # 0. The relation
S ic;xi"! = 0 has lower degree than the original relation, and is not the trivial rela-
tion since F has characteristic 0, «; = 0 implying ic; = 0 if i > 0. Since we could
assume the original relation had minimum degree, we have reached a contradiction.
The case |x,| odd is similar. Applying gA to a relation &, + «;x, = 0 gives
O=cxpgel+(;el)(x,®1+10X,) = (Xg+01X,)®1+x; ®X,. Since xy+o;x, =0,
we get «; @ x,, = 0, which implies «; = 0 and hence &, = 0. O

The structure of Hopf algebras over Z is much more complicated than over a
field. Here is an example that is still fairly simple.

Example 3C.5: Divided Polynomial Algebras. We showed in Proposition 3.22 that the
H-space J(S§™) for n evenhas H*(J(§™);Z) a divided polynomial algebra, the algebra
I;[ ] with additive generators «; in dimension 2i and multiplication given by a’f =
i+j

i )(xi +j- The coproduct in I;[«] is uniquely determined by

iy
the multiplicative structure since A(x¥) = (; 01+ 1o ) =3, (’f) o © ¥ which
implies that A(«X/k!) = 3, (i /i) ® (k"7 (k — i)1), that is, A(og) = ; & © Xg_;. SO

in this case the coproduct has a simpler description than the product.

klx,, hence x;x; = (

It is interesting to see what happens to the divided polynomial algebra I’;[«]
when we change to field coefficients. Clearly FQ[(X] is the same as Q[«]. In contrast
with this, I"Zp[cx], with multiplication defined by o;; = (ijj ) ®;, j, happens to be
isomorphic as an algebra to the infinite tensor product ®;., Zylex,il/ (O(Zi)’ as we
will show in a moment. However, as Hopf algebras these two objects are different
since o, is primitive in Ri-o Zp[(xpi]/(az,-) but not in I"Zp [«] where the coproduct
is given by A(a) = >; &; ® Xp_; -

Now let us show that there is an algebra isomorphism

I, [ = ®i20Z, [,/ (X))

Since I [«] = T;[a]®Z),, this is equivalent to:

(%) The element O(?OO(ZL

The product (x?"(x’;l 0(’;’,2 equals ma,, for n = ng+ nyp + --- + n;p* and some

integer m. The question is whether p divides m. We will show:

e (x’;,f in I3[ «] is divisible by p iff n; = p for some i.

(%) o & is divisible by p iff n, = p — 1, assuming that n; < p for each i.

This implies (*) by an inductive argument in which we build up the product in ()
by repeated multiplication on the right by terms «,:.
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k
To prove () we recall that o, o = (™57

binomial coefficient can be computed using Lemma 3C.6 below. Assuming that n; < p
for each i and that n; +1 < p, the p-adic representations of n+ p* and n differ only
in the coefficient of p*, so mod p we have ("tf’k> = ("’;lzl> = ny + 1. This conclusion
also holds if n; +1 = p, when the p-adic representations of n + p* and n differ also

k+1 The statement (*) then follows.

)an+pk. The mod p value of this

in the coefficient of p

Lemma 3C.6. If p is a prime, then (2) =[], (7:) mod p where n = 3, n;p' and
k=>,kjpt with0<n; <p and 0 < k; < p are the p-adic representations of n
and k.

Here the convention is that (2) =0 if n < k, and (3) =1 forall n > 0.

Proof: In Zp[x] there is an identity (1 + x)” =1 + x” since p clearly divides (’Z) =
p!/k!(p — k)! for 0 < k < p. By induction it follows that (1 + x)P' =1+ x"". Hence
if n = >, n;p' is the p-adic representation of n then:

(1+2)" = (1+x)™1 +xP)" (1 +xP )2 ...
= [+ () x+ ()22 4w ()2
X [1 + ()X ()X p’?l)x(’”’””]

y [1 . (712)}(!,2 N (Téz)xZPZ Tt (,,"fl)x(”’”"’z]x

When this is multiplied out, one sees that no terms combine, and the coefficient of
x* is just T1, (t) where k = 3. k,;p' is the p-adic representation of k. O

Pontryagin Product

Another special feature of H-spaces is that their homology groups have a prod-
uct operation, called the Pontryagin product. For an H-space X with multiplication
U:XxX— X, this is the composition

H,(X;R)®H,(X;R) L>H*(X><X;R) L>H>,<(X;R)

where the first map is the cross product defined in §3.B. Thus the Pontryagin product
consists of bilinear maps H;(X;R) xHj(X;R)—>Hi+j(X;R). Unlike cup product, the
Pontryagin product is not in general associative unless the multiplication u is associa-
tive or at least associative up to homotopy, in the sense that the maps X x XxX— X,
(x,v,z) — u(x,u(y,z)) and (x,y,z) — u(u(x,y),z) are homotopic. Fortunately
most H-spaces one meets in practice satisfy this associativity property. Nor is the
Pontryagin product generally commutative, even in the graded sense, unless u is
commutative or homotopy-commutative, which is relatively rare for H-spaces. We
will give examples shortly where the Pontryagin product is not commutative.
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In case X is a CW complex and u is a cellular map the Pontryagin product can be
computed using cellular homology via the cellular chain map

Ci(X;R)XCi(X;R) — Ciyj(XXX;R) SN Ciyj(X;R)
where the cross product map sends generators corresponding to cells e! and ¢’ to

the generator corresponding to the product cell e'x e’ and then U, is applied to this
product cell.

Example 3C.7. Let us compute the Pontryagin product for J(S§™). Here there is one
cell e™ for each i > 0, and u takes the product cell e x el homeomorphically onto
the cell ¢"™*" This means that H,(J(S™);Z) is simply the polynomial ring Z[x]
on an n-dimensional generator x. This holds for n odd as well as for n even, so
the Pontryagin product need not satisfy the same general commutativity relation as
cup product. In this example the Pontryagin product structure is simpler than the cup
product structure, though for some H-spaces it is the other way round. In applications
it is often convenient to have the choice of which product structure to use.

This calculation immediately generalizes to J(X) where X is any connected CW
complex whose cellular boundary maps are all trivial. The cellular boundary maps in
the product X™ of m copies of X are then trivial by induction on m using Propo-
sition 3B.1, and therefore the cellular boundary maps in J(X) are all trivial since the
quotient map X" — J,. (X) is cellular and each cell of J,,(X) is the homeomorphic
image of a cell of X™. Thus H,(J(X);Z) is free with additive basis the products

Mx ... xe™ of positive-dimensional cells of X, and the multiplicative structure

e
is that of polynomials in noncommuting variables corresponding to the positive-

dimensional cells of X.

Another way to describe H,(J(X);Z) in this example is as the tensor algebra
TH «(X;Z), where for a graded R-module M that is trivial in dimension zero, like
the reduced homology of a path-connected space, the tensor algebra TM is the direct
sum of the n-fold tensor products of M with itself for all n > 1, together with a copy
of R in dimension zero, with the obvious multiplication coming from tensor product
and scalar multiplication.

Generalizing the preceding example, we have:

Proposition 3C.8. If X is a connected CW complex with H, (X;R) a free R-module,
then H, (J(X);R) is isomorphic to the tensor algebra TPNI* (X;R).

This can be paraphrased as saying that the homology of the free H-space gener-
ated by a space with free homology is the free algebra generated by the homology of
the space.

Proof: With coefficients in R, let cp:Tﬁ* (X)—H,(J(X)) be the homomorphism

whose restriction to the n-fold tensor product H « (X )®™ is the composition

H,(X)®" & H, (X)®" =5 H,(X") — H, (J,(X)) — H, (J(X))
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where the next-to-last map is induced by the quotient map X" — J,,(X). Itis clear that
@ is a ring homomorphism since the product in J(X) is induced from the natural
map X" x X" —X™*"_ To show that @ is an isomorphism, consider the following
commutative diagram of short exact sequences:

~

0 — T, 1 H(X) —— T, H(X) —— H(X)*" — 0

ol o -

0 — H,(J, (X)) — H,(J,(X)) — H(X"") — 0

In the upper row, TmPNI* (X) denotes the direct sum of the products ﬁ* (X)®k for
k < m, so this row is exact. The second row is the homology exact sequence for
the pair (J,(X), J,._; (X)), with quotient J,,(X)/J,,_;(X) the n-fold smash product
X" This long exact sequence breaks up into short exact sequences as indicated, by
commutativity of the right-hand square and the fact that the right-hand vertical map
is an isomorphism by the Kiinneth formula, using the hypothesis that H, (X) is free
over the given coefficient ring. By induction on n and the five-lemma we deduce from
the diagram that @: Tnﬁ* (X)—H,(J,(X)) is an isomorphism for all n. Letting n
g0 to oo, this implies that @: Tﬁ* (X)—H,(J(X)) is an isomorphism since in any
given dimension Tnﬁ* (X) is independent of n when n is sufficiently large, and the
same is true of H, (J,(X)) by the second row of the diagram. |

Dual Hopf Algebras

There is a close connection between the Pontryagin product in homology and

the Hopf algebra structure on cohomology. Suppose that X is an H-space such that,
with coefficients in a field R, the vector spaces H,(X;R) are finite-dimensional for
all n. Alternatively, we could take R = Z and assume H, (X;Z) is finitely gener-
ated and free for all n. In either case we have H™(X;R) = Homg(H, (X;R),R), and
as a consequence the Pontryagin product H, (X;R)®H, (X;R)—H,(X;R) and the
coproduct A:H*(X;R)—H™(X;R)® H* (X;R) are dual to each other, both being in-
duced by the H-space product p:XxX—X. Therefore the coproduct in cohomol-
ogy determines the Pontryagin product in homology, and vice versa. Specifically,
the component Aij:Hi+j(X;R)—>Hi(X;R)®HJ(X;R) of A is dual to the product
H;(X;R)®H;(X;R)—H;, ;(X;R).
Example 3C.9. Consider J(S™) with n even, so H*(J(S");Z) is the divided poly-
nomial algebra I';[«]. In Example 3C.5 we derived the coproduct formula A(&y) =
>0 ® 0y ;. Thus A;; takes o, ; to o; ® o, soif x; is the generator of H;,, (J(S™);2)
dual to «;, then XiXj =X This says that H,, (J(S™);Z) is the polynomial ring Z[x].
We showed this in Example 3C.7 using the cell structure of J(S™), but the present
proof deduces it purely algebraically from the cup product structure.

Now we wish to show that the relation between H*(X;R) and H, (X;R) is per-
fectly symmetric: They are dual Hopf algebras. This is a purely algebraic fact:
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Proposition 3C.10. Let A be a Hopf algebra over R that is a finitely generated
free R-module in each dimension. Then the product T:A® A— A and coproduct
A:A—A®A have duals " : A* > A* @ A* and A* : A* ® A* — A* that give A* the
structure of a Hopf algebra.

Proof: This will be apparent if we reinterpret the Hopf algebra structure on A for-
mally as a pair of graded R-module homomorphisms m:A® A—A and A:A—A®A
together with an element 1 € A° satisfying:

(1) The two compositions A e, A®ATS A and A tr, A®A -5 A are the identity,
where iy(a) = ael and i,(a) = 1®a. This says that 1 is a two-sided identity
for the multiplication in A.

(2) The two compositions A 2, 40425 A and A2 A9 A5 A are the identity,
where py(a®1) = a, pylaeb) = 0 if b € A’ with j > 0, p,(1ea) = a, and
p,(aseb) =0if a € AJ with Jj > 0. This is just the coproduct formula A(a) =

ael+lea+ g ,a;9d, ;.

(3) The diagram at the right commutes, where
T(a®ebeced) = (—l)ija®¢:®b®d for
b € A', c € A’. This is the condition that
A is an algebra homomorphism since if we
follow an element aeb € A™ ® A™ across the top of the diagram we get A(ab),
while the lower route gives first A(a) @ A(b) = (X;a;@ay_;) e (Z;b;eb,_;),
then after applying T and e 1 this becomes 3, ;(-1)™ Vajbieay, b, ;=

n-j -
(Ziaieay )(X;bjeb, ;), whichis A(a)A(D).

Condition (1) for A dualizes to (2) for A*, and similarly (2) for A dualizes to (1) for
A*. Condition (3) for A dualizes to (3) for A*. O

ARA —T L A2 L, A®A
lA@A In@rr
ARARA®A ARARAR®A

Example 3C.11. Let us compute the dual of a polynomial algebra R[x]. Suppose
first that x has even dimension. Then A(x") = (x&1 + 1ex)" = >, (7.1>x"®x""'

i ’

so if «; is dual to x!, the term (’Z)xicax"’i in A(x™) gives the product relation
KKy = (71‘) o, . This is the rule for multiplication in a divided polynomial algebra,
so the dual of R[x] is I3[ «] if the dimension of x is even. This also holds if 2 =0
in R, since the even-dimensionality of x was used only to deduce that R[x]®R[x]
is strictly commutative.

In case x is odd-dimensional, then as we saw in Example 3C.1, if we set y = x?,
we have A(y™) = (yeol+1ey)" =3, (’i‘)yit&y"‘i and A(xy") = Ax)A(Y™) =
D (?)xyi oy IS, (Vi‘)yi ® xy" '. These formulas for A say that the dual of R[x]
is Aglax]®IR[B] where « is dual to x and S is dual to y.

This algebra allows us to deduce the cup product structure on H*(J(S™);R) from
the geometric calculation H, (J (8™);R) = R[x] in Example 3C.7. As another applica-
tion, recall from earlier in this section that RP® and CP* are H-spaces, so from their
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cup product structures we can conclude that the Pontryagin rings H, (RP*;Z,) and
H, (CP%;7Z) are divided polynomial algebras.

In these examples the Hopf algebra is generated as an algebra by primitive ele-
ments, so the product determines the coproduct and hence the dual algebra. This is
not true in general, however. For example, we have seen that the Hopf algebra l"zn [x]
is isomorphic as an algebra to &, Zplexyil/ (ai,-,) , but if we regard the latter tensor
product as the tensor product of the Hopf algebras Z,[ ]/ (‘Xzf) then the elements
&,i are primitive, though they are not primitive in l"zn [«x] for i > 0. In fact, the Hopf
algebra ;. Zp[(xp,t]/ (O(Zi) is its own dual, according to one of the exercises below,
but the dual of I3 [«] is Z,[«].

Exercises

1. Suppose that X is a CW complex with basepoint e € X a 0-cell. Show that X is an
H-space if there is a map p: XX X— X such that the maps X— X, x — pu(x,e) and
x — l(e,x), are homotopic to the identity. [Sometimes this is taken as the definition
of an H-space, rather than the more restrictive condition in the definition we have
given.] With the same hypotheses, show also that y can be homotoped so that e is a
strict two-sided identity.

2. Show that a retract of an H-space is an H-space if it contains the identity element.

3. Show that if X is an H-space such that the set of path-components of X is a
group with respect to the multiplication induced by the H-space structure, then all
the path-components are homotopy equivalent.

4. Show that an H-space or topological group structure on a path-connected, locally
path-connected space can be lifted to such a structure on its universal cover. [For
the group SO(n) considered in the next section, the universal cover for n > 2 is a
2-sheeted cover, a group called Spin(n).]

5. Show that if (X,e) is an H-space then 11, (X,e) is abelian. [Compare the usual
composition f-g of loops with the product u(f(t),g(t)) coming from the H-space
multiplication u.]

6. Show that S" is an H-space iff the attaching map of the 2n-cell of J,(S") is
homotopically trivial.

7. What are the primitive elements of the Hopf algebra Z,[x] for p prime?
8. Show that the tensor product of two Hopf algebras is a Hopf algebra.

9. Apply the theorems of Hopf and Borel to show that for a finite CW complex H-space
X with H,(X;Z) + 0, the Euler characteristic X (X) is 0.

10. Let X be a path-connected H-space with H*(X;R) free and finitely generated
in each dimension. For maps f,g:X— X, the product fg:X—X is defined by
(fg)(x) = f(x)g(x), using the H-space product.
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(a) Show that (fg)*(x) = f*(x) + g* () for primitive elements « € H*(X;R).

(b) Deduce that the k'-power map x — x* induces the map & — ko on primitive
elements «. In particular the quaternionic k-power map S°— S has degree k.

(c) Show that every polynomial a,x"b, + --- + a,xb, + a, with coefficients in H
has arootin H if n > 0. [See Theorem 1.8.]

11. If T" is the n-dimensional torus, the product of n circles, show that the Pontrya-
ginring H, (T™;Z) is the exterior algebra A;[xy, -, x, ] with |x;| = 1.

12. Compute the Pontryagin product structure in H, (L;Z,) where L is an infinite-
dimensional lens space S/ Z,, for p an odd prime, using the coproductin H*(L; Z,).

13. Verify that the Hopf algebras Az[«] and Zp[(x]/(tx"’) are self-dual.

14. Show that the coproduct in the Hopf algebra H, (X;R) dual to H *(X;R) isinduced
by the diagonal map X > Xx X, x — (x,x).

15. Suppose that X is a path-connected H-space such that H*(X;Z) is free and finitely
generated in each dimension, and H* (X; Q) is a polynomial ring Q[«]. Show that the
Pontryagin ring H, (X;Z) is commutative and associative, with a structure uniquely
determined by the ring H*(X;Z).

16. Classify algebraically the Hopf algebras A over Z such that A" is free for each n
and A®Q ~ Q[«]. In particular, determine which Hopf algebras A®Z,, arise from
such A’s.

3.D The Cohomology of SO(n)

After the general discussion of homological and cohomological properties of
H-spaces in the preceding section, we turn now to a family of quite interesting and
subtle examples, the orthogonal groups O(n). We will compute their homology and
cohomology by constructing very nice CW structures on them, and the results illus-
trate the general structure theorems of the last section quite well. After dealing with
the orthogonal groups we then describe the straightforward generalization to Stiefel
manifolds, which are also fairly basic objects in algebraic and geometric topology.

The orthogonal group O(n) can be defined as the group of isometries of R"
fixing the origin. Equivalently, this is the group of nx#n matrices A with entries in
R such that AA' = I, where A! is the transpose of A. From this viewpoint, O (n) is
topologized as a subspace of R™ , with coordinates the n? entries of an n x n matrix.
Since the columns of a matrix in O(n) are unit vectors, O(n) can also be regarded
as a subspace of the product of n copies of ™ '. It is a closed subspace since the
conditions that columns be orthogonal are defined by polynomial equations. Hence
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O(n) is compact. The map O(n)x0O(n)— 0O(n) given by matrix multiplication is
continuous since it is defined by polynomials. The inversion map A — A~! = A! is
clearly continuous, so O(n) is a topological group, and in particular an H-space.

The determinant map O(n)— {+1} is a surjective homomorphism, so its kernel
SO (n), the ‘special orthogonal group,’ is a subgroup of index two. The two cosets
SO(n) and O(n) — SO(n) are homeomorphic to each other since for fixed B € O (n)
of determinant —1, the maps A — AB and A — AB~! are inverse homeomorphisms
between these two cosets. The subgroup SO(n) is a union of components of O(n)
since the image of the map O(n)— {+1} is discrete. In fact, SO(n) is path-connected
since by linear algebra, each A € SO(n) is a rotation, a composition of rotations in
a family of orthogonal 2-dimensional subspaces of R", with the identity map on the
subspace orthogonal to all these planes, and such a rotation can obviously be joined
to the identity by a path of rotations of the same planes through decreasing angles.
Another reason why SO(n) is connected is that it has a CW structure with a single
0-cell, as we show in Proposition 3D.1. An exercise at the end of the section is to show
that a topological group with a CW structure is an orientable manifold, so SO(n) is
a closed orientable manifold. From the CW structure it follows that its dimension is
n(n — 1)/2. These facts can also be proved using fiber bundles.

The group O(n) is a subgroup of GL, (R), the ‘general linear group’ of all invert-
ible nx n matrices with entries in R, discussed near the beginning of §3.C. The Gram-
Schmidt orthogonalization process applied to the columns of matrices in GL,, (R) pro-
vides a retraction 7 :GL, (R)— O (n), continuity of + being evident from the explicit
formulas for the Gram-Schmidt process. By inserting appropriate scalar factors into
these formulas it is easy to see that O(n) is in fact a deformation retract of GL,(R).
Using a bit more linear algebra, namely the polar decomposition, it is possible to show
that GL,,(R) is actually homeomorphic to O(n)x R¥ for k =n(n+1)/2.

The topological structure of SO (n) for small values of n can be described in
terms of more familiar spaces:

= SO(1) is a point.
« SO(2), the rotations of R?, is both homeomorphic and isomorphic as a group to

s, thought of as the unit complex numbers.

= SO(3) is homeomorphic to RP3. To see this, let @ D3 —S0(3) send a nonzero
vector x to the rotation through angle |x|m about the axis formed by the line
through the origin in the direction of x. An orientation convention such as the

‘right-hand rule’ is needed to make this unambiguous. By continuity, ¢ then

sends O to the identity. Antipodal points of S? = dD® are sent to the same

rotation through angle 7, so @ induces a map @:RP*—SO0O(3), regarding RP>
as D*® with antipodal boundary points identified. The map @ is clearly injective
since the axis of a nontrivial rotation is uniquely determined as its fixed point
set, and @ is surjective since by easy linear algebra each nonidentity element
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of SO(3) is a rotation about some axis. It follows that @ is a homeomorphism
RP? ~ SO(3).

» SO(4) is homeomorphic to $*xS0(3). Identifying R* with the quaternions H
and S° with the group of unit quaternions, the quaternion multiplication v — vw
for fixed w € S° defines an isometry p,, € O(4) since |[vw| = [v||lw| = |v]
if lw| = 1. Points of O(4) are 4-tuples (vq,---,v,) of orthonormal vectors
v; € H = R*, and we view O(3) as the subspace with v; = 1. A homeomorphism
$3x0(3)—0(4) is defined by sending (v, (1,V5,V3,04)) 10 (V, V5V, V3V, 0,V) =
P, (1,05,V3,v4), with inverse (v,v,,v3,v4) — (v, (1L, v,v v v,o)) =
(v, py-1(v,v,,V5,V4)) . Restricting to identity components, we obtain a homeo-
morphism $3xS0O(3) ~ SO(4). This is not a group isomorphism, however. It
can be shown, though we will not digress to do so here, that the homomorphism
Y:S 3% 8§3—S50(4) sending a pair (u,v) of unit quaternions to the isometry
w— uwv_ ! of H is surjective with kernel Z, = {+(1,1)}, and that ¢ is a
covering space projection, representing S°xS°® as a 2-sheeted cover of SO(4),
the universal cover. Restricting ¢ to the diagonal §3 = {tu,u)} c $3x §3 gives
the universal cover S°—§ 0(3), so SO(3) is isomorphic to the quotient group of
$3 by the normal subgroup {+1}.

Using octonions one can construct in the same way a homeomorphism SO(8) =
$”xS0(7). But in all other cases SO(n) is only a ‘twisted product’ of SO(n — 1)
and S™'; see Example 4.55 and the discussion following Corollary 4D.3.

Cell Structure

Our first task is to construct a CW structure on SO (n). This will come with a very
nice cellular map p:RP" !xRP" 2x --- x RP' —> SO (n). To simplify notation we will
write P! for RP'.

To each nonzero vector v € R" we can associate the reflection »(v) € O(n)
across the hyperplane consisting of all vectors orthogonal to v. Since r(v) is a re-
flection, it has determinant —1, so to get an element of SO(n) we consider the com-
position p(v) = r(v)r(e;) where e, is the first standard basis vector (1,0,---,0).
Since p(v) depends only on the line spanned by v, p defines amap P" '-S0 (n).
This map is injective since it is the composition of v — ¥ (v), which is obviously an in-
jection of P" !into O(n)—-SO(n), with the homeomorphism O (n)-S0O(n)—S0O(n)
given by right-multiplication by v (e;). Since p is injective and P" ! is compact Haus-
dorff, we may think of p as embedding P! as a subspace of SO (n).

More generally, for a sequence I = (iy,---,i,,) with each i; < n, we define a
map p:P' = Piix ... xP"™ —SO(n) by letting p(vy,---,v,,) be the composition
pwy) ---plvy). If @':D'— P! is the standard characteristic map for the i-cell of
Pt, restricting to the 2-sheeted covering projection 0D'— P!, then the product
@' : D! — P! of the appropriate @%’s is a characteristic map for the top-dimensional
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cell of P'. We will be especially interested in the sequences I = (iy, -+, 1,,) satisfying
n>i; > - >1i, > 0. These sequences will be called admissible, as will the sequence
consisting of a single 0.

Proposition 3D.1. The maps pp’:D'—S0On), for I ranging over all admissible
sequences, are the characteristic maps of a CW structure on SO (n) for which the
map p:P" IxP" 2x ... xP' -SO0(n) is cellular.

In particular, there is a single 0-cell e¥ = {1}, so SO(n) is path-connected. The
other cells e/ = e ... e are products, via the group operationin SO (n), of the cells
el c P csom).

Proof: According to Proposition A.2 in the Appendix, there are three things to show
in order to obtain the CW structure:
(1) For each decreasing sequence I, p@' is a homeomorphism from the interior of

D' onto its image.

(2) The resulting image cells e’ are all disjoint and cover SO (n).
(3) For each e! , p(pl (BDI ) is contained in a union of cells of lower dimension than el

To begin the verification of these properties, define p:SO(n)—S" ! by evaluation

at the vector e,, = (0,---,0,1), p(x) = «(e,,). Isometries in P" %2 c Pl c SO(n)
fix e,, so p(P"?) = {e,}. We claim that p is a homeo- en
morphism from P* ! — P"2 onto §"! — {e,,}. This can be

seen as follows. Thinking of a point in P" as a vector v, q

the map p takes this to p(v)(e,) = r(v)r(e;)(e,), which

equals v (v)(e,) since e, isin the hyperplane orthogonal to ﬁ‘ p)
e, . From the picture at the rightitis then clear that p simply - (1

stretches the lower half of each meridian circle in $"~! onto
the whole meridian circle, doubling the angle up from the south pole, so prl_pn-2
represented by vectors whose last coordinate is negative, is taken homeomorphically
onto S" ! — {e,}.

The next statement is that the map

h: (P 'xSO0m—-1),P" 2xS0(n-1))—(SOn),S0n-1)), hv,x) =pv)x

is a homeomorphism from (P! = P"?)xSO(n—-1) onto SO(n) —SO(n—1). Here
we view SO(n — 1) as the subgroup of SO(n) fixing the vector e,,. To construct
an inverse to this homeomorphism, let § € SO(n) — SO(n — 1) be given. Then
B(e,) # e, so by the preceding paragraph there is a unique vz € Pl — p"2 with
p(vg)(e,) = B(e,), and vy depends continuously on B since B(e,) does. The com-
position o = p(vB)’lﬁ then fixes e,,, hence lies in SO(n — 1). Since p(vﬁ)(xﬁ =B,
the map B — (vg, «g) is an inverse to h on SO(n) —SO(n—1).

Statements (1) and (2) can now be proved by induction on n. The map p takes
P"? to SO(n —1), so we may assume inductively that the maps pg’ for I ranging
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over admissible sequences with first term i; < n —1 are the characteristic maps for a
CW structure on SO (n —1), with cells the corresponding products e’. The admissible
sequences I with i; = n — 1 then give disjoint cells el covering SO(n) —SO(n-1)
by what was shown in the previous paragraph. So (1) and (2) hold for SO (n).

To prove (3) it suffices to show there is an inclusion PPt c PPl in SO(n)
since for an admissible sequence I, the map p:P'—SO(n) takes the boundary of
the top-dimensional cell of P! to the image of products P/ with J obtained from
I by decreasing one term i; by 1, yielding a sequence which is admissible except
perhaps for having two successive terms equal. As a preliminary to showing that
PPt c P'P!, observe that for & € O(n) we have r(x(v)) = ar(v)a'. Hence
pw)p(w) = rw)r(e)r(w)r(e;) = r(v)r(w') where w' = r(e;)w. Thus to show
PP' c PP it suffices to find for each pair v, w € R*! a pair x € R*!, y € R
with r(v)r(w) = r(x)r(y).

Let V c R¥*! be a 2-dimensional subspace containing v and w. Since V N R’ is
at least 1-dimensional, we can choose a unit vector ¥ € VNR!. Let x € O(i+1) take
V to R? and y to e; . Then the conjugate ar(V)rw)o ! = r(a())r(x(w)) lies in
SO(2), hence has the form p(z) = v(z)r(e;) for some z € R’ by statement (2) for
n = 2. Therefore

r()r(w) =« 'r@re)a=r(a(2)r(a (e)) =rx)r(y)

for x = a'(z) € R™"! and y € R'.

It remains to show that the map p:P" !xP" ?x ... xP'—>S0(n) is cellular.
This follows from the inclusions P'P' c P'Pi"! derived above, together with another
family of inclusions P'P/ c P/P! for i < j. To prove the latter we have the formulas

p(v)pw) =rw)rw’) where w' = 7 (e;)w, as earlier

=r(w)rwHrw)rv)

rir(v)w')rw) from r (x(v)) = oar(v)o !

r(rw)re)w)rw) =r(pw)w)r(v)

plpv)w)p’) where v’ = r(e;)v, hence v = r(e;)v’

In particular, taking v € R'"! and w € R’*! with i < j, we have p(v)w € R/*!, and
the product p(v)p(w) € pipJ equals the product p(p(v)w)p (') € pipt. O

Mod 2 Homology and Cohomology

Each cell of SO (n) is the homeomorphic image of a cellin P* ' x P ?x ... x P!,
so the cellular chain map induced by p:P"* 'xP" ?x ... xP' —>S0(n) is surjective.
It follows that with Z, coefficients the cellular boundary maps for SO (n) are all trivial
since this is true in P' and hence in P* ' x P"?x ... x P! by Proposition 3B.1. Thus
H,(50(n);Z,) has a Z, summand for each cell of SO(n). One can rephrase this
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as saying that there are isomorphisms H;(SO(n);Z,) = Hi(S"’1 XS 2% ... ><Sl; Z,)
for all i since this product of spheres also has cells in one-to-one correspondence
with admissible sequences. The full structure of the Z, homology and cohomology
rings is given by:

Theorem 3D.2. (a) H*(S0(n);7,) ~ ®ioddZZ[Bi]/(Bfi) where |B;| =1 and p; is
the smallest power of 2 such that IBf > n.

(b) The Pontryagin ring H, (SO (n);Z,) is the exterior algebra Az, [el, .- ,e"’l].

Here ¢! denotes the cellular homology class of the cell elcptlcs O(n), and
B; is the dual class to e', represented by the cellular cochain assigning the value 1 to
the cell e’ and 0 to all other i-cells.

Proof: As we noted above, p induces a surjection on cellular chains. Since the cellular
boundary maps with Z, coefficients are trivial for both P lx ... xP! and SO(n),
it follows that p, is surjective on H,(—;Z,) and p* is injective on H*(—;Z,). We
know that H* (P" !x ... x P1;Z,) is the polynomial ring Z,[ &, - - -, &, _;] truncated
by the relations aﬁ“ = 0. For B; € Hi(SO(n);ZZ) the dual class to ei, we have
p*(B;) = 3 o}, the class assigning 1 to each i-cell in a factor P/ of P""'x - x P!
and O to all other i-cells, which are products of lower-dimensional cells and hence
map to cells in SO (n) disjoint from e’.

First we will show that the monomials B; = B; ---B; corresponding to admissi-
ble sequences I are linearly independent in H* (SO (n);Z,), hence are a vector space
basis. Since p* is injective, we may identify each B; with its image > j o<§ in the trun-
cated polynomial ring Z,[xy, -, (xn,l]/((xf, -+, 00_1). Suppose we have a linear
relation >, b;B; = 0 with b; € Z, and I ranging over the admissible sequences. Since
each B; is a product of distinct f;’s, we can write the relation in the form xf, +y =0
where neither x nor y has B, as a factor. Since «; occurs only in the term f; of
xB;, + v, where it has exponent 1, we have xf, + ¥ = x«; + z where neither x nor
z involves o . The relation xo; +z = 0 in Zy[ &y, ---, &,_11/ (e, -+, &’ ;) then
implies x = 0. Thus we may assume the original relation does not involve ;. Now
we repeat the argument for ,. Write the relation in the form xf, + y = 0 where
neither x nor y involves 8, or f;. The variable &, now occurs only in the term f,
of xB, + v, where it has exponent 2, so we have xf, + ¥ = x&5 + z where x and
z do not involve o or «,. Then xa5 + z = 0 implies x = 0 and we have a relation
involving neither 8, nor B,. Continuing inductively, we eventually deduce that all
coefficients b; in the original relation > ; b;8; = 0 must be zero.

Observe now that 7 = By, if 2i < n and B? = 0 if 2i = n, since (3;«})® =
ZJ- (x?i. The quotient Q of the algebra Z,[;, B>, -1 by the relations 312 = B,; and
B; = 0 for j = n then maps onto H*(SO(n);Z,). This map Q—H*(SO(n);Z,)
is also injective since the relations defining Q allow every element of Q to be rep-
resented as a linear combination of admissible monomials B!, and the admissible
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monomials are linearly independent in H*(SO (n); Z,). The algebra Q can also be
described as the tensor product in statement (a) of the theorem since the relations
Ef = f,; allow admissible monomials to be written uniquely as monomials in powers
of the B;’s with i odd, and the relation B; = 0 for j > n becomes B;, = Bf" =0
where j = ip; with i odd and p; a power of 2. For a given i, this relation holds iff
ip; = n, or in other words, iff |Bf"| > n. This finishes the proof of (a).

For part (b), note first that the group multiplication SO(n)xS0O(n)—S0(n) is
cellular in view of the inclusions P'P' c P'P'"! and PP/ c P/P! for i < j. So
we can compute Pontryagin products at the cellular level. We know that there is at
least an additive isomorphism H, (SO(n);Z,) = Az, [e!,.--,e" 1] since the products

eI = ell..

. e with I admissible form a basis for H,(50(n);Z,). The inclusion
PPt c P'P*"! then implies that the Pontryagin product (e')? is 0. It remains only to
see the commutativity relation e‘e’ = e/e’. The inclusion P'P/ c P/P! for i < j was
obtained from the formula p(v)p(w) = p(p(v)w)p ') for v € R, w e R/,
and v’ = r(e;)v. The map f:P'xP’—P/xP', f(v,w) = (p(v)w,v’), is a homeo-
morphism since it is the composition of homeomorphisms (v,w) — (v,p(vV)w) —
', p(v)w) — (p(v)w,v’). The first of these maps takes elxel homeomorphically
onto itself since p(v)(ej )y =el if i< j. Obviously the second map also takes elxel
homeomorphically onto itself, while the third map simply transposes the two fac-
tors. Thus f restricts to a homeomorphism from e'xel onto e’ ><ei, and therefore
elel = elel in H,(SO0(n);Z,). O

The cup product and Pontryagin product structures in this theorem may seem at
first glance to be unrelated, but in fact the relationship is fairly direct. As we saw in the
previous section, the dual of a polynomial algebra Z,[x] is a divided polynomial alge-
bra I7,[«], and with Z, coefficients the latter is an exterior algebra Az, [, &, -]
where |x;| = 2i|x\. If we truncate the polynomial algebra by a relation x%" = 0,
then this just eliminates the generators «; for i > n. In view of this, if it were the
case that the generators B; for the algebra H* (SO (n);Z,) happened to be primitive,
then H* (SO (n); Z,) would be isomorphic as a Hopf algebra to the tensor product of
the single-generator Hopf algebras Z,[f;1/ (Bfi), i=1,3, -+, hence the dual algebra
H,(S0(n);Z,) would be the tensor product of the corresponding truncated divided
polynomial algebras, in other words an exterior algebra as just explained. This is in
fact the structure of H, (SO (n); Z,), so since the Pontryagin productin H, (SO (n); Z,)
determines the coproduct in H*(SO(n); Z,) uniquely, it follows that the B;’s must
indeed be primitive.

It is not difficult to give a direct argument that each f; is primitive. The coprod-
uct A:H*(SO(n);Z,) —>H*(SO(n);Z,) ® H* (50 (n);Z,) isinduced by the group mul-
tiplication p:SO(n)xSO(n)—SO(n). We need to show that the value of A(j;) on
e’ e/, whichwe denote (A(B;),e’ @e’),is the same as the value (8, 1+1ef;,e' ®e’)
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for all cells e/ and ¢/ whose dimensions add up to i. Since A = p*, we have
(A(Bi),el(@ef) = (Bi,u*(eleaef)). Because u is the multiplication map, u(eIer)
is contained in P'P’ , and if we use the relations P/pJ c pIpi~1 and P/P* c P*P/ for
j < k to rearrange the factors P/ of P'P’ so that their dimensions are in decreasing
order, then the only way we will end up with a term P! is if we start with P'P’/ equal
to P'P% or P°P'. Thus (B;,u, (e @e’)) = 0 unless e’ ee’ equals e’ ee or e’ee’.
Hence A(B;) contains no other terms besides 8;®1 + 1® f3;, and B; is primitive.

Integer Homology and Cohomology

With Z coefficients the homology and cohomology of SO(n) turns out to be a
good bit more complicated than with Z, coefficients. One can see a little of this
complexity already for small values of 7, where the homeomorphisms SO(3) ~ RP3
and SO (4) ~ $°x RP? would allow one to compute the additive structure as a direct
sum of a certain number of Z’s and Z,’s. For larger values of n the additive structure
is qualitatively the same:

|| Proposition 3D.3. H,(SO0(n);2) is a direct sum of Z’s and Z,’s.

Proof: We compute the cellular chain complex of SO (n), showing that it splits as a
tensor product of simpler complexes. Foracell ¢! ¢ P"~' ¢ SO(n) the cellular bound-
ary de' is 2e'"! for even i > 0 and 0 for odd i. To compute the cellular boundary of
acell e --- e we can pull it back to a cell e’ x --- xe of P* !x ... xP' whose
cellular boundary, by Proposition 3B.1, is Zj(—l)"fei‘ X -+ xdelix -+ xe™ where
0j=1i,+---+1i;_,. Hence d(e™ ... em) = Zj(—l)“fe“ coodel ... et where it is un-
derstood that e --- del - .. '™ is zero if ij = in +1 since P~ lpii—l ¢ Pif‘lPif‘z,
in a lower-dimensional skeleton.

To split the cellular chain complex C,(SO(n)) as a tensor product of smaller
chain complexes, let C?! be the subcomplex of C, (SO(n)) with basis the cells eo,
eZi, eZi’l, and e®'e?"!. This is a subcomplex since de®! = 0, de’t = 2e2i’1,
and, in P2'x P>, d(e®ix ey = de’ixe?! 4 e¥ixde’t ! = 2271 x %71 hence
d(eZieZi’l) = 0 since P%1p?i~l ¢ p2i-1p2i=2 " The claim is that there are chain
complex isomorphisms

C.(SORk+1)) ~ C?0C*® ... ®C%k
C.(SOk +2)) ~ C*0C® .- 0C*ko 2!

where C?**! has basis ¢ and e?**!. Certainly these isomorphisms hold for the chain
groups themselves, so it is only a matter of checking that the boundary maps agree.
For the case of C, (SO(2k + 1)) this can be seen by induction on k, as the reader can
easily verify. Then the case of C, (SO (2k + 2)) reduces to the first case by a similar
argument.

Since H, (C 2i) consists of Z’s in dimensions 0 and 4i — 1 and a Z, in dimension
2i — 1, while H, (C***!) consists of Z's in dimensions 0 and 2k + 1, we conclude
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from the algebraic Kiinneth formula that H,(SO(n);Z) is a direct sum of Z’s and
Zy’s. O

Note that the calculation shows that SO(2k) and SO(2k —1)x S 2k=1 have iso-
morphic homology groups in all dimensions.

In view of the preceding proposition, one can get rather complete information
about H,(50(n);Z) by considering the natural maps to H,(SO(n);Z,) and to the
quotient of H,(SO(n);Z) by its torsion subgroup. Let us denote this quotient by
ere (50(n); 7). The same strategy applies equally well to cohomology, and the uni-
versal coefficient theorem gives an isomorphism H}kyee (S0(n);72) = Hﬁ:”e (50(n); 7).

The proof of the proposition shows that the additive structure of H"*¢(SO (n);2)
is fairly simple:

HIT(SO(2k +1);7) ~ H, (S3xS7x -+ x §¥1y
HI{T(SO(k +2);7) =~ H, (S>x 8" x -+ x §H 1 g2k+1)

The multiplicative structure is also as simple as it could be:

Proposition 3D.4. The Pontryagin ring ij”e(S O (n);Z) is an exterior algebra,

HZ:”Q(SO(2k +1);2) =~ Ajlas,a,,---,aq4,_1] Wwhere|a;| =i
Hf:ree(SO(Zk + 2),1) ~ Az[ag,a7, e ,a/4k71,a,2k+1]

The generators a; are primitive, so the dual Hopf algebra Hj,,,(SO(n);2) is an

exterior algebra on the dual generators «;.

Proof: As in the case of Z, coefficients we can work at the level of cellular chains
since the multiplication in SO(n) is cellular. Consider first the case n = 2k + 1.
Let E' be the cycle e?ie?il generating a Z summand of H,(SO(n);Z). By what we
have shown above, the products E' ---E'™ with i, > --- > i, form an additive
basis for ere(SO(n);Z), so we need only verify that the multiplication is as in
an exterior algebra on the classes E'. The map f in the proof of Proposition 3D.2
gives a homeomorphism e'xe’ ~ e/ xe! if i < Jj, and this homeomorphism has local
ij+1

degree (-1) since it is the composition (v,w) — (v,p(v)w) — V', p(v)W) —

(p(v)w,v’) of homeomorphisms with local degrees +1,—1, and (-1)¥. Applying
this four times to commute E'E/ = e?1e?i710%1 02171 1o EIE! = 0270217 10%102171 three
of the four applications give a sign of —1 and the fourth gives a +1, so we conclude
that E'F/ = —E/E' if i < j. When i = j we have (Ei)2 = 0 since e%le?i1e?ip?i7l =
eZieZieZi’leZi’l, which lies in a lower-dimensional skeleton because of the relation
plip2i - p2ip2i-1_

Thus we have shown that H, (SO(2k + 1);Z) contains AZ[EI, .- ,Ek] as a sub-
algebra. The same reasoning shows that H, (SO (2k + 2);Z) contains the subalgebra
AZ[El, oy ,Ek,eZk”]. These exterior subalgebras account for all the nontorsion in

H,(SO(n);Z), so the product structure in H,"®(S0(n);Z) is as stated.
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2k+1 are primitive in HL (SO (n);Z).

Now we show that the generators E' and e
Looking at the formula for the boundary maps in the cellular chain complex of SO(n),
we see that this chain complex is the direct sum of the subcomplexes C(m) with
basis the m-fold products e’ ---e'™ with i; > -++ > i,, > 0. We allow m = 0 here,
with C(0) having basis the 0-cell of SO(n). The direct sum C(0)® --- ®@C(m) is
the cellular chain complex of the subcomplex of SO (n) consisting of cells that are
products of m or fewer cells e'. In particular, taking m = 2 we have a subcomplex
X C SO(n) whose homology, mod torsion, consists of the 7Z in dimension zero and
the Z’s generated by the cells E', together with the cell e?**! when n = 2k + 2. The
inclusion X — SO (n) induces a commutative diagram

H*free(X;Z) A H{TEE(X;Z) ®H*fme(X;Z)

! |

HI™(S0m);7) =2 H/™(S0();2) ® H{™(S0(n);2)

where the lower A is the coproduct in ere(SO(n); Z) and the upper A is its ana-
log for X, coming from the diagonal map X — X x X and the Kiinneth formula. The
classes E! in the lower left group pull back to elements we label E' in the upper left
group. Since these have odd dimension and H{:ree (X;Z) vanishes in even positive
dimensions, the images A(Ei) can have no components a®b with both a and b
positive-dimensional. The same is therefore true for A(E') by commutativity of the

2k+1 when

diagram, so the classes E' are primitive. This argument also works for e
n=2k+2.

Since the exterior algebra generators of Hﬁ:”e(S O(n);Z) are primitive, this alge-
bra splits as a Hopf algebra into a tensor product of single-generator exterior algebras
Azla;]. The dual Hopf algebra H}‘Tee(S O(n);Z) therefore splits as the tensor prod-
uct of the dual exterior algebras A;[«x;], hence H}‘me(SO(n);Z) is also an exterior

algebra. O

The exact ring structure of H*(SO(n);Z) can be deduced from these results
via Bockstein homomorphisms, as we show in Example 3E.7, though the process is
somewhat laborious and the answer not very neat.

Stiefel Manifolds

Consider the Stiefel manifold V,, ,, whose points are the orthonormal k-frames
in R", thatis, orthonormal k-tuples of vectors. Thus Vo isa subset of the product of
k copies of S™1, and it is given the subspace topology. As special cases, Vi =0m)
and V,,; =S "1 Also, V,.» can be identified with the space of unit tangent vectors to
$™1 since a vector v at the point x € $" ! is tangent to S™ ! iff it is orthogonal to
x. We can also identify V,, ,,_; with SO(n) since there is a unique way of extending
an orthonormal (n — 1)-frame to a positively oriented orthonormal n-frame.
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There is a natural projection p: O(n)—»Vn,k sending « € O(n) to the k-frame
consisting of the last k columns of «, which are the images under « of the last k
standard basis vectors in R"™. This projection is onto, and the preimages of points are
precisely the cosets xO(n — k), where we embed O(n—k) in O(n) as the orthogonal
transformations of the first n — k coordinates of R". Thus V,, ; can be viewed as the
space O(n)/O(n — k) of such cosets, with the quotient topology from O (n). This is
the same as the previously defined topology on V,, ; since the projection O(n)—V,,
is a surjection of compact Hausdorff spaces.

When k < n the projection p:50(n)—V, , is surjective, and V,, , can also be
viewed as the coset space SO(n)/SO(n—k). We can use this to induce a CW structure
on Vy from the CW structure on SO (n). The cells are the sets of cosets of the form
elSoOm—k) =e" -..emSO(n - k) for n > i, > --- > i,, = n — k, together with the
coset SO(n — k) itself as a 0-cell of Vik- These sets of cosets are unions of cells of
SO(n) since SO(n—k) consists of the cells ¢/ = e/! ... ¢/ with n—k > J1> > gy
This implies that V,, ; is the disjoint union of its cells, and the boundary of each cell
is contained in cells of lower dimension, so we do have a CW structure.

Since the projection SO (n) -V, isa cellular map, the structure of the cellular
chain complex of V, ;, can easily be deduced from that of SO(n). For example, the
cellular chain complex of V5., is just the complex C 2k defined earlier, while for
Vyi.2 the cellular boundary maps are all trivial. Hence the nonzero homology groups

of V,,, are
7 fori=0,4k-1
Hi (Vg1 22) = {Zz fori=2k-1

H,(Voyy;7) =7 fori=0, 2k—2, 2k -1, 4k -3

Thus SO(n) has the same homology and cohomology groups as the product space

§%k+1 when

V320X VsoX o XV when n =2k+1,0ras Vi, X Vs o X - XV g5 X
n = 2k + 2. However, our calculations show that SO(n) is distinguished from these
products by its cup product structure with Z, coefficients, at least when n > 5, since
B‘f is nonzero in H 4(S 0O(n);Z,) if n = 5, while for the product spaces the nontrivial
element of Hl(—;Zz) must lie in the factor Vj,, and H4(V3‘2;Zz) =0. When n =4
we have SO (4) homeomorphic to SO (3) x §3 = V3, X $% as we noted at the beginning

of this section. Also SO(3) = V3, and SO(2) = st

Exercises
1. Show that a topological group that has a CW structure is an orientable manifold.
[Consider the homeomorphisms x — xg for a fixed group element g.]

2. Using the CW structure on SO(n), show that 7;SO(n) =~ Z, for n > 3. Find a
loop representing a generator, and describe how twice this loop is nullhomotopic.

3. Compute the Pontryagin ring structure in H, (SO (5);2).
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3.E Bockstein Homomorphisms

Homology and cohomology with coefficients in a field, particularly 7, with p
prime, often have more structure and are easier to compute than with Z coefficients.
Of course, passing from Z to Z,, coefficients can involve a certain loss of information,
a blurring of finer distinctions. For example, a Z,. in integer homology becomes
a pair of Z,’s in 7, homology or cohomology, so the exponent n is lost with 7,
coefficients. In this section we introduce Bockstein homomorphisms, which in many
interesting cases allow one to recover Z coefficient information from 7, coefficients.
Bockstein homomorphisms also provide a small piece of extra internal structure to
Z,, homology or cohomology itself, which can be quite useful.

We will concentrate on cohomology in order to have cup products available,
but the basic constructions work equally well for homology. If we take a short ex-
act sequence 0— G— H — K—0 of abelian groups and apply the covariant functor
Hom((C,,(X), —), we obtain

0—C"(X;G) — C"(X;H) — C"(X;K)—0

which is exact since C,,(X) is free. Letting n vary, we have a short exact sequence of
chain complexes, so there is an associated long exact sequence

- — H"(X;G) — H"(X;H) — H"(X;K) — H"" 1 (X;G) — - --

whose ‘boundary’ map H"(X;K) — H™"(X; G) is called a Bockstein homomorphism.

We shall be interested primarily in the Bockstein 8: H"(X;Z,,) —H"(X; Z,,) as-
sociated to the coefficient sequence 0—Z,, — Z,,,. — Z,, —0, especially when m is
prime, but for the moment we do not need this assumption. Closely related to B is the
Bockstein E:H”(X; Z,,) —H""Y(X;7) associated to 0—7 27 — Z,,—0. From the
natural map of the latter short exact sequence onto the former one, we obtain the re-
lationship 8 = p E where p:H*(X;Z)—H*(X;Z,,) is the homomorphism induced by
the map Z— 7, reducing coefficients mod m. Thus we have a commutative triangle
in the following diagram, whose upper row is the exact sequence containing E .

H™(X:7) -2~ H"(X:Z,,) =2~ H™\(X:7) -~ H™"\(X:Z)

I

H'n+1(X; Zm)

Example 3E.1. Let X be a K(Z,,,1), for example RP* when m = 2 or an infinite-
dimensional lens space with fundamental group Z,, for arbitrary m. From the ho-
mology calculations in Examples 2.42 and 2.43 together with the universal coefficient
theorem or cellular cohomology we have H" (X;Z,,) ~ Z,,, for all n. Let us show that
B:H"(X; Zm)—>H"+1(X; Z,,) is an isomorphism for n odd and zero for n even. If
n is odd the vertical map p in the diagram above is surjective for X = K(Z,,,1), as
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is E since the map m is trivial, so B is surjective, hence an isomorphism. On the
other hand, when 7 is even the first map p in the diagram is surjective, so § = 0 by
exactness, hence 8 =0.

A useful fact about S is that it satisfies the derivation property
(%) Bla~b) =Ba)-b+ (-1)"a p(b)

which comes from the corresponding formula for ordinary coboundary. Namely, let
@ and ¢ be Z,, cocycles representing a and b, and let @ and ¢ be lifts of these to
Z,,2 cochains. Concretely, one can view @ and ¢ as functions on singular simplices
with values in {0,1,---,m — 1}, and then @ and ¢ can be taken to be the same
functions, but with {0,1,---,m — 1} regarded as a subset of Z,,.. Then §@ = mn
and ¢ = mu for Z, cocycles n and p representing B(a) and B(b). Taking cup
products, @ « (¢ is a Z,,,. cochain lifting the Z,, cocycle @ - ¢, and

(PP =P PxPsP=mn-PxPmp=mn-y =@ -p)

where the sign + is (-1)'%!. Hence n— ¢ + (-1)'% @ < u represents B(a - b), giving
the formula ().

Example 3E.2: Cup Products in Lens Spaces. The cup product structure for lens
spaces was computed in Example 3.41 via Poincaré duality, but using Bocksteins we
can deduce it from the cup product structure in CP*, which was computed in Theo-
rem 3.12 without Poincaré duality. Consider first the infinite-dimensional lens space
L =S8%/Z,, where Z,, acts on the unit sphere S in C* by scalar multiplication, so
the action is generated by the rotation v — e2™/™y . The quotient map S® — CP®
factors through L, so we have a projection L— CP*. Looking at the cell structure
on L described in Example 2.43, we see that each even-dimensional cell of L projects
homeomorphically onto the corresponding cell of CP®”. Namely, the 2n-cell of L
is the homeomorphic image of the 2n-cell in $?"*! ¢ C™*! formed by the points
cos0(zy,-++,2,,0) +sin0(0,---,0,1) with Eizf =1 and 0 < 0 < 1T, and the same
is true for the 2n-cell of CP”. From cellular cohomology it then follows that the
map L— CP* induces isomorphisms on even-dimensional cohomology with Z,, co-
efficients. Since H*(CP®;Z,,) is a polynomial ring, we deduce that if y € H 2(L; Z,,)
is a generator, then yk generates H 2k(L;Zm) for all k.

By Example 3E.1 there is a generator x € H 1(L;Zm) with B(x) = y. The prod-
uct formula (%) gives B(xyk) = B(x)yk - xB(yk) = yk“. Thus B takes xyk
to a generator, hence xyk must be a generator of H2k+1(L;Zm). This completely
determines the cup product structure in H *(L;Zm) if m is odd since the commu-
tativity property of cup product implies that x> = 0 in this case. The result is that
H*(L; Zy,) = Ny, [x]®Z,,[y] for odd m. When m is even this statement needs to
be modified slightly by inserting the relation that x? is the unique element of order
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2in H 2(L; Z,) = Z,, as we showed in Example 3.9 by an explicit calculation in the
2-skeleton of L.

The cup product structure in finite-dimensional lens spaces follows from this
since a finite-dimensional lens space embeds as a skeleton in an infinite-dimensional
lens space, and the homotopy type of an infinite-dimensional lens space is determined
by its fundamental group since it is a K(mr,1). It follows that the cup product struc-
ture on a lens space $°"*1/z,, with Z,, coefficients is obtained from the preceding

calculation by truncating via the relation y"*! = 0.

The relation 8 = pﬁ implies that p° = pﬁpE = 0 since Ep = 0 in the long exact
sequence containing B . Because BZ = 0, the groups H"(X;Z,,) form a chain complex
with the Bockstein homomorphisms B as the ‘boundary’ maps. We can then form the
associated Bockstein cohomology groups Ker B/ Im B, which we denote BH" (X;Z,,) in
dimension 7. The most interesting case is when m is a prime p, so we shall assume
this from now on.

Proposition 3E.3. If H,(X;Z) is finitely generated for all n, then the Bockstein co-

homology groups BH" (X; Z,) are determined by the following rules:

(@) Each Z summand of H"(X;Z) contributes a Z,, summand to BH"(X; Zy).

(b) Each Zpk summand of H"(X;Z) with k > 1 contributes Zp summands to both
BH""'(X;Z,) and BH"(X;Z,,).

(c) Az, summand of H"(X;Z) gives Z,, summands of H" 1(X; Z,) and H"(X; z,)
with B an isomorphism between these two summands, hence there is no contri-
bution to BH* (X; z,).

Proof: We will use the algebraic notion of minimal chain complexes. Suppose that C
is a chain complex of free abelian groups for which the homology groups H,,(C) are
finitely generated for each n. Choose a splitting of each H,(C) as a direct sum of
cyclic groups. There are countably many of these cyclic groups, so we can list them
as Gy, G,,---. For each G; choose a generator g; and define a corresponding chain
complex M(g;) by the following prescription. If g; has infinite order in G; C H, (C),
let M(g;) consist of justa Z in dimension n,;, with generator z;. On the other hand, if
g; has finite order k in H, (C),let M(g;) consist of Z’s in dimensions n; and n; +1,
generated by x; and y; respectively, with 0y; = kx;. Let M be the direct sum of the
chain complexes M(g;). Define a chain map o : M — C by sending z; and x; to cycles
C; and &; representing the corresponding homology classes g;, and y; to a chain n;
with 0n; = k&;. The chain map ¢ induces an isomorphism on homology, hence also
on cohomology with any coefficients, by Corollary 3.4. The dual cochain complex
M™* obtained by applying Hom(—, Z) splits as the direct sum of the dual complexes
M*(g;). So in cohomology with Z coefficients the dual basis element z;* generates
a Z summand in dimension n;, while y; generates a Z, summand in dimension
n; + 1 since 6x;° = ky;". With Z,, coefficients, p prime, z gives a Z,, summand of
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H"(M;Z,), while x; and y; give 7, summands of H"(M;Z,) and H L (M; z,) i
p divides k and otherwise they give nothing.

The map o induces an isomorphism between the associated Bockstein long exact
sequences of cohomology groups, with commuting squares, so we can use M* to
compute S and E , and we can do the calculation separately on each summand M*(g;).
Obviously S and E are zero on y; and z. When p divides k we have the class
xi* e HY(M; Zp), and from the definition of Bockstein homomorphisms it follows
that ﬁ(xi*) = (k/p)yF € H""'(M;Z) and B(xF) = (k/p)y] € H""”(M;Zp). The
latter element is nonzero iff k is not divisible by p?. O

Corollary 3E.4. In the situation of the preceding proposition, H* (X;Z) contains no
elements of order p° iff the dimension of BH"(X; Z,) as a vector space over 7,
equals the rank of H"(X;Z) for all n. In this case p:H* (X;7)— H™* (X; z,) is injec-
tive on the p-torsion, and the image of this p-torsion under p is equal to Im 3.

Proof: The first statement is evident from the proposition. The injectivity of p on
p-torsion is in fact equivalent to there being no elements of order p>. The equality
Im p = Im 8 follows from the fact that Im 8 = p(Im E ) = p(Kerm) in the commutative
diagram near the beginning of this section, and the fact that for m = p the kernel of
m is exactly the p-torsion when there are no elements of order p~. O

Example 3E.5. Let us use Bocksteins to compute H™ (RP®x RP®;Z). This could in-
stead be done by first computing the homology via the general Kiinneth formula, then
applying the universal coefficient theorem, but with Bocksteins we will only need the
simpler Kiinneth formula for field coefficients in Theorem 3.16. The cup product
structure in H* (RP® x RP*; Z) will also be easy to determine via Bocksteins.

For p an odd prime we have ﬁ*([RP‘”;Zp) =0, hence H* (RP* x RP*;Z,) = 0 by
Theorem 3.16. The universal coefficient theorem then implies that H* (RP® x RP®; 7)
consists entirely of elements of order a power of 2. From Example 3E.1 we know that
Bockstein homomorphisms in H* (RP*; Z,) = Z,[x] are given by B(ka_l) = x?* and
B(ka) =0.In H*(RP* x RP*;Z,) ~ Z,[x, y] we can then compute S via the product
formula B(x™y™) = (Bx™)y" + x"™(By™). The

6
answer can be represented graphically by the fig- Y ] I I:I I:I I:I
y bl

ure to the right. Here the dot, diamond, or circle

in the (m,n) position represents the monomial y4

x™y™ and line segments indicate nontrivial Bock- y3 I I:I I:I I:I
steins. For example, the lower left square records y?

the formulas B(xy) = x2y + xyz, B(xzy) = I I:I I:I I:I
x?y? = B(xy?), and B(x?y?) = 0. Thus in this )11

square we see that Ker 8 = Im 8, with generators
the ‘diagonal’ sum x°y + xy? and x%y?. The

o —O —O0 *—O0

1 x x? x3 x* x5 x6
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same thing happens in all the other squares, so it is apparent that Ker 8 = Im 8 ex-
cept for the zero-dimensional class ‘1.” By the preceding corollary this says that all
nontrivial elements of H *(RP® x RP%;Z) have order 2. Furthermore, Im f consists
of the subring Zz[xz, 2], indicated by the circles in the figure, together with the
multiples of x? Y+ xy2 by elements of Z2[x2, yz]. It follows that there is a ring
isomorphism

H*(RP® X RP®;Z) ~ Z[A, u, v1/ (2A, 2, 2v, vZ + A%u + Ap?)

where p(A) = x2, p(u) = y2, p(v) = x2y +xy2, and the relation v° +2\2u +2\u2 =0
holds since (x?y + xy?)? = x*y? + x2y?.

This calculation illustrates the general principle that cup product structures with
Z coefficients tend to be considerably more complicated than with field coefficients.
One can see even more striking evidence of this by computing H* (RP* x RP® x RP®;Z)
by the same technique.

Example 3E.6. Let us construct finite CW complexes Xy, X5, and Y such that the
rings H*(X,;Z) and H*(X,;Z) are isomorphic but H*(X;xY;Z) and H*(X,XY;Z)
are isomorphic only as groups, not as rings. According to Theorem 3.16 this can
happen only if all three of X;, X5, and Y have torsion in their Z-cohomology. The
space X, is obtained from $2x $? by attaching a 3-cell e* to the second S? factor
by a map of degree 2. Thus X; has a CW structure with cells e, e%, e%, e3, e* with
e3 attached to the 2-sphere e, U e5. The space X, is obtained from §° v % v §* by
attaching a 3-cell to the second S summand by a map of degree 2, so it has a CW
structure with the same collection of five cells, the only difference being that in X,
the 4-cell is attached trivially. For the space Y we choose a Moore space M (Z,,2),
with cells labeled f°, 2, f3, the 3-cell being attached by a map of degree 2.

From cellular cohomology we see that both H*(X;;Z) and H*(X,;Z) consist of
Z’s in dimensions 0, 2, and 4, and a Z, in dimension 3. In both cases all cup products
of positive-dimensional classes are zero since for dimension reasons the only possible
nontrivial product is the square of the 2-dimensional class, but this is zero as one sees
by restricting to the subcomplex $°xS? or S% v §2 v §*. For the space Y we have
H*(Y;Z) consisting of a Z in dimension 0 and a Z, in dimension 3, so the cup
product structure here is trivial as well.

With Z, coefficients the cellular cochain complexes for X;, Y, and X;xY are
all trivial, so we can identify the cells with a basis for Z, cohomology. In X; and Y
the only nontrivial Z, Bocksteins are S (e%) = e and B(f?) = f3. The Bocksteins
in X;xY can then be computed using the product formula for S, which applies to
cross product as well as cup product since cross product is defined in terms of cup
product. The results are shown in the following table, where an arrow denotes a
nontrivial Bockstein.
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e x f° eixfe edx fO etx fO eix f? etxfi—etxf?

esx f° e’ x f? ef><f2/ve3><f2;re3><f3

e’ x f*? eixfi—esxf?

The two arrows from e%xf2 mean that B(e%xfz) = ex f2+ e%xf3. It is evident
that BH* (X;xY;Z,) consists of Z,’s in dimensions 0, 2, and 4, so Proposition 3E.3
implies that the nontorsion in H* (X;xY;Z) consists of Z’s in these dimensions. Fur-
thermore, by Corollary 3E.4 the 2-torsion in H* (X;xY;Z) corresponds to the image
of B and consists of Z, x Z,’s in dimensions 3 and 5 together with Z,’s in dimensions
6 and 7. In particular, there is a Z, corresponding to e3x fi+ eg x f3 in dimension 5.
There is no p-torsion for odd primes p since H* (X; X Y; 7,) ~ H*(X;; Z,) QH*(Y; Z,)
is nonzero only in even dimensions.

We can see now that with Z coefficients, the cup product H>x H> — H” is nontriv-
ial for X; XY but trivial for X, xY. For in H* (X;xY;Z,) we have, using the relation
(axb) - (cxd) = (a~c)X (b~ d) which follows immediately from the definition of
cross product,

(1) e2xfoce?xfd=(e2wed)x(fO< f3) =0 since e? —e? =0
2) eExfO o (@xfi+esxf?) = (ef v e)x(fO v f2) + (ef v ed)x(fO v f3) =
(e? —e5)x f3 since e v e =0
and in H'(X;xY;Z,) ~ H (X;xY;Z) we have (e5 — e3)x f3 =exf> +0 fori=1
but (e we3)x f3=0xf3 =0 for i=2.
Thus the cohomology ring of a product space is not always determined by the
cohomology rings of the factors.

Example 3E.7. Bockstein homomorphisms can be used to get a more complete pic-
ture of the structure of H*(SO(n);Z) than we obtained in the preceding section.
Continuing the notation employed there, we know from the calculation for RP® in
Example 3E.1 that B(3; cxfi‘l) =2 (xﬁi and B(2; cx?i) = 0, hence B(B5;_1) = By;
and B(B,;) = 0. Taking the case n = 5 as an example, we have H*(SO(S);ZZ) =
Z5[B;, 133]/([3?, B%). The upper part of the table at the top of the next page shows
the nontrivial Bocksteins. Once again two arrows from an element mean ‘sum,’ for
example B(B,B3) = B(B1)B3 + B1B(B3) = BaB3 + B1By = ‘3%53 + B3. This Bockstein
data allows us to calculate H i(S 0O(5);7Z) modulo odd torsion, with the results indi-
cated in the remainder of the table, where the vertical arrows denote the map p. As
we showed in Proposition 3D.3, there is no odd torsion, so this in fact gives the full
calculation of H (SO (5);2).



Bockstein Homomorphisms Section 3.E | 309

—

L Bi—B  BI——=Bl BB B

53/3133~3333 BiB;— BBy BiB;—BIBs BiB;
z 0 7, Z, z, 7, Z,xZ 0 z, z
1 X y x? xy x3=y? x%*y,z x3y=y% yz

R N I S
BY BB Bl piipip, P gl BB, BB

It is interesting that the generator v € H 3(5’ 0O(5);Z) =~ Z has y2 nontrivial,
since this implies that the ring structures of H* (SO(5);Z) and H*(RP’x S%;7) are
not isomorphic, even though the cohomology groups and the Z, cohomology rings of
these two spaces are the same. An exercise at the end of the section is to show that
in fact SO(5) is not homotopy equivalent to the product of any two CW complexes
with nontrivial cohomology.

A natural way to describe H*(SO(5);Z) would be as a quotient of a free graded
commutative associative algebra F[x, y, z] over Z with |x| =2, |y| =3,and |z| = 7.
Elements of F[x, v, z] arerepresentable as polynomials p(x, v, z), subject only to the
relations imposed by commutativity. In particular, since y and z are odd-dimensional

we have yz = —zy, and y2 and z°
2

are nonzero elements of order 2 in F[x,y,z].
Any monomial containing y? or z° as a factor also has order 2. In these terms, the
calculation of H*(SO(5);Z) can be written

H*(SO(5);7) = Flx,y,z]1/(2x,x*, y*, 2%, xz,x3 — y*)

The next figure shows the nontrivial Bocksteins for H* (SO(7); Z,). Here the num-
bers across the top indicate dimension, stopping with 21, the dimension of SO(7).
The labels on the dots refer to the basis of products of distinct j;’s. For example, the
dot labeled 135 is B, B385.

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21

2356 12356 13456 123456
[ ] L] L] [ o [ o L]
2 1 2 3 4 ANI2\ 124 134 234 1234 56 156 236 356 /456 12456 23456
35 36 1245 1246
12 13 23 24 34 1256 1356 1456 2456 3456
16 26 \45 12351236/ 1345 2345
G——

5 6 46 12345 12346
136 245
15 25 125 1245 346 1346 2346
"’ 246

0

135 “iﬁ”'\\

145 236

The left-right symmetry of the figure displays Poincaré duality quite graphically. Note
that the corresponding diagram for SO(5), drawn in a slightly different way from
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the preceding figure, occurs in the upper left corner as the subdiagram with labels 1
through 4. This subdiagram has the symmetry of Poincaré duality as well.

From the diagram one can with some effort work out the cup product structure
in H*(SO(7);Z), but the answer is rather complicated, just as the diagram is:

FIx,y,z,v,wl/(2x,2v,x*, %, 22 v?, wi xz, vz, vw, y*w, x*y?v,

3v,xw - yzv - x3v)

yzz - X
where x, v, z, v, w have dimensions 2, 3, 7, 7, 11, respectively. It is curious that

the relation x® = 32 in H*(S0O(5);Z) no longer holds in H*(SO(7);Z).

Exercises

1. Show that H*(K(Z,,,1);Z,,) is isomorphic as a ring to H*(K(Z,,,1);Z,,) ®Z, if k
divides m. In particular, if m/k is even, this is Az, [x]®Z;[¥].

2. In this problem we will derive one half of the classification of lens spaces up
to homotopy equivalence, by showing that if L, (¢,,---,¥,) = L,,({},---,¥,) then
Oy, = +;--- £, k" mod m for some integer k. The converse is Exercise 29
for §4.2.

(@) Let L = L,,(,,---,¥,) and let Z;, be the multiplicative group of invertible ele-
ments of Z,,. Define t € Z};, by the equation xy”’l = tz where x is a generator
of H'(L;Z,,), ¥ = B(x), and z € H*""'(L;Z,,) is the image of a generator of
H?""1(L;Z). Show that the image T(L) of t in the quotient group ZJ, /=(Z} )"
depends only on the homotopy type of L.

(b) Given nonzero integers k,,---,k,, define a map J?:SZ"’1 — 82" sending the

unit vector (1%, ... 7,e%) in C" to (r,e®1% ... v, en%) Show:
i) f has degree k; --- k,,.
(ii) f induces a quotient map f:L—L  for L' = L, (0}, --,¥,) provided that
k;t; =L; mod m for each j.
(iii) f induces an isomorphism on T, hence on H 1 (= 2,,).
(iv) f has degree k, --- k,,i.e., f, is multiplication by k, --- k,, on Hy,_;(—;Z).

(c) Using the f in (b), show that T(L) = ky ---k,T(L").

(d) Deduce that if L, (¢;,---,¢,) =~ L, ({1, ---,¢,), then £, --- €, = =] --- £, k"
modm for some integer k.

3. Let X be the smash product of k copies of a Moore space M(Z,,n) with p
prime. Compute the Bockstein homomorphisms in H* (X; Zp) and use this to de-
scribe H*(X;Z).

4. Using the cup product structure in H*(SO(5);Z), show that SO(5) is not homotopy
equivalent to the product of any two CW complexes with nontrivial cohomology.
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3.F Limits and Ext

It often happens that one has a CW complex X expressed as a union of an in-
creasing sequence of subcomplexes X, C X; € X, C ---. For example, X; could be
the i-skeleton of X, or the X;’s could be finite complexes whose union is X. In situa-
tions of this sort, Proposition 3.33 says that H,,(X; G) is the direct limit li_n}Hn (X;;G).
Our goal in this section is to show this holds more generally for any homology the-
ory, and to derive the corresponding formula for cohomology theories, which is a bit
more complicated even for ordinary cohomology with Z coefficients. For ordinary
homology and cohomology the results apply somewhat more generally than just to
CW complexes, since if a space X is the union of an increasing sequence of subspaces
X; with the property that each compact set in X is contained in some X;, then the
singular complex of X is the union of the singular complexes of the X;’s, and so this
gives a reduction to the CW case.

Passing to limits can often result in nonfinitely generated homology and cohomol-
ogy groups. At the end of this section we describe some of the rather subtle behavior
of Ext for nonfinitely generated groups.

Direct and Inverse Limits

As a special case of the general definition in §3.3, the direct limit imG; of a
sequence of homomorphisms of abelian groups G, LN G, =, G3 — -+ is defined
to be the quotient of the direct sum D, G; by the subgroup consisting of elements of
the form (g,,9, — &;(g1),93 — &>(g>), - +). It is easy to see from this definition that
every element of imG; is represented by an element g; € G; for some i, and two
such representatives g; € G; and g; € G; define the same element of im G; iff they
have the same image in some G; under the appropriate composition of «,’s. If all
the «;’s are injective and are viewed as inclusions of subgroups, lim G, is just U; G;.

JE—

Example 3F.1. For a prime p, consider the sequence Z L7457 — ... with all
maps multiplication by p. Then limG; can be identified with the subgroup Z[1/p]
of Q consisting of rational numbers with denominator a power of p. More generally,
we can realize any subgroup of Q as the direct limit of a sequence Z -7 —7 — - - -
with an appropriate choice of maps. For example, if the nt" map is multiplication by
n, then the direct limit is Q itself.

Example 3F.2. The sequence of injections Z, £, /s £, Z,s — -+, with p prime,
has direct limit a group we denote pr . This isisomorphic to Z[1/p]/Z, the subgroup
of Q/Z represented by fractions with denominator a power of p. In fact Q/Z is
isomorphic to the direct sum of the subgroups Z[1/p]l/Z = pr for all primes p. Itis
not hard to determine all the subgroups of Q/Z and see that each one can be realized
as a direct limit of finite cyclic groups with injective maps between them. Conversely,
every such direct limit is isomorphic to a subgroup of Q/Z.
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We can realize these algebraic examples topologically by the following construc-
tion. The mapping telescope of a sequence of maps X, o, X i Xy — -
is the union of the mapping cylinders M, with the copies of X; in M, and My,
identified for all i. Thus the mapping tele-
scope is the quotient space of the disjoint
union [, (X;x[i,i+ 1]) in which each point
(x;,i+1) € X;x[i,i+ 1] is identified with
(fi(x;),i+1) € X;,; x[i+1,i+2]. In the
mapping telescope T, let T; be the union of
the first i mapping cylinders. This deformation retracts onto X; by deformation re-

X X X X

0 1 2 3

tracting each mapping cylinder onto its right end in turn. If the maps f; are cellular,
each mapping cylinder is a CW complex and the telescope T is the increasing union
of the subcomplexes T; = X;. Then Proposition 3.33, or Theorem 3F.8 below, implies
that H,(T;G) ~ imH, (X;; G).

Example 3F.3. Suppose each f; is amap S"—S" of degree p for a fixed prime p.
Then H,, (T) is the direct limit of the sequence Z £, 727 — ... considered in
Example 3F.1 above, and ﬁk(T) =0 for k + n, so T is a Moore space M(Z[1/p],n).

Example 3F.4. In the preceding example, if we attach a cell e™"! to the first S* in T
via the identity map of S™, we obtain a space X which is a Moore space M (Zps,n)

since X is the union of its subspaces X; = T; U e"*!, which are M(Z,:,n)’s, and the

pt

inclusion X; C X;,; induces the inclusion Z,i C Z,:.1 on H,.

pi+
Generalizing these two examples, we can obtain Moore spaces M(G,n) for arbi-

trary subgroups G of Q or Q/Z by choosing maps f;:S™ —S™ of suitable degrees.

The behavior of cohomology groups is more complicated. If X is the increasing
union of subcomplexes X;, then the cohomology groups H" (X;;G), for fixed n and
G, form a sequence of homomorphisms

o7 04
._,GZ_Z,Gl_l,GO

Given such a sequence of group homomorphisms, the inverse limit lim G; is defined
to be the subgroup of [[;G; consisting of sequences (g;) with «;(g;) = g,_, forall i.
There is a natural map A:H™(X;G) — lim H"(X;; G) sending an element of H"(X;G)
to its sequence of images in H" (X;; G) under the maps H"(X; G) —H" (X;; G) induced
by inclusion. One might hope that A is an isomorphism, but this is not true in general,
as we shall see. However, for some choices of G it is:

Proposition 3F.5. Ifthe CW complex X is the union of an increasing sequence of sub-
complexes X; and if G is one of the fields Q or Z,,, then A:H" (X; G) — lim H" (X;; G)
is an isomorphism for all n.

Proof: First we have an easy algebraic fact: Given a sequence of homomorphisms
of abelian groups G; —> G, —> G5 — ---, then Hom(im G;,G) = limHom(G;, G)
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for any G. Namely, it follows from the definition of lim G; that a homomorphism

@:lim G, — G is the same thing as a sequence of homomorphisms @;:G;— G with

@; = @i, «; forall i. Such a sequence (@;) is exactly an element of limHom(G;, G).
Now if G is a field Q or Z,, we have

H"(X;G) = Hom(H,(X;G),G)
= Hom(limH, (X;;G),G)
= limHom(H,, (X;; G), G)
= limH"(X;;G) O

Let us analyze what happens for cohomology with an arbitrary coefficient group,
or more generally for any cohomology theory. Given a sequence of homomorphisms
of abelian groups

— Gy — G, —5 G,
define amap 6:1[;G;—I[;G; by 6(---,9;,--+) = (++,9; — ®;41(gis1)s ), so that
lim G, is the kernel of §. Denoting the cokernel of § by lim'G;, we have then an exact
sequence
0—limG; — [[;G; - [1;G; _’@161’ —0

This may be compared with the corresponding situation for the direct limit of a se-
quence G; —> G, —> G5 — ---. In this case one has a short exact sequence

0— @G~ ®,G, —limG, —0

where 6(---,g;,-++) = (+-+,9;—&;_1(g;_1), - **), SO O is injective and there is no term
lim' G; analogous to lim'G;.
Here are a few simple observations about lim and lim':

« If all the o;’s are isomorphisms then limG; ~ G, and lim'G; = 0. In fact,
lim'G, = 0 if each «; is surjective, for to realize a given element (h;) € [[;G; as
6(g;) we can take g, = 0 and then solve «,(g;) = —hy, x:(g») =g, —hy, -

. Ifall the ;’s are zero then lim G, = lim'G, = 0.

= Deleting a finite number of terms from the end of the sequence --- — G, — G,
does not affect imG; or im'G,. More generally, imG; and lim'G; are un-
changed if we replace the sequence --- —G;— G, by a subsequence, with the
appropriate compositions of «;’s as the maps.

Example 3F.6. Consider the sequence of natural surjections -- - —2y—1L,—1Z,
with p aprime. The inverse limit of this sequence is a famous object in number theory,
called the p-adic integers. Our notation for it will be 217 . Itis actually a commutative
ring, not just a group, since the projections Z,:.1 —Z,: are ring homomorphisms, but
we will be interested only in the additive group structure. Elements of Z,, are infinite
sequences (---,a,,a,) with a; € Z,,; such that a; is the mod p' reduction of a;, .
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For each choice of a; there are exactly p choices for a;,,, so Z, is uncountable.

There is a natural inclusion Z c 2;, as the constant sequences a; :pn eZ.

There is another way of looking at 2,,. An element of 2p has a unique represen-
tation as a sequence (---,a,,a,) of integers a; with 0 < a; < p' for each i. We
can write each a; uniquely in the form bi,lpi‘l +: 4+ byp+bywith 0 <b; <p.
The fact that a,,, reduces mod p' to a; means that the numbers b; depend only
on the element (---,a,,a,) € Z,, SO we can view the elements of Z, as the ‘base p
infinite numbers’ --- b, b, with 0 < b; < p for all i, with the familiar rule for addition
in base p notation. From this viewpoint, the subgroup Z C Z, consists of the finite
expressions b, --- b b,. It is also clear from this representation of 7, that Z, is
torsionfree.

Since the maps Z,in —Z,: are surjective, 11111Zpi = 0. The next example shows
how p-adic integers can also give rise to a nonvanishing }11111 term.

Example 3F.7. Consider the sequence --- — Z .77 for p prime. In this case
the inverse limit is zero since a nonzero integer can only be divided by p finitely often.
The lim! term is the cokernel of the map &:[1,Z—[[,Z given by §(y;, ¥y, --+) =
(¥1 = PY2, Yo — PY3, -+ +). We claim that the map 2,0/2—» Coker 6 sending a p-adic
number --- b, b, as in the preceding example to (bg, by, ---) is an isomorphism. To
see this, note that the image of § consists of the sums y,(1,0,---)+y,(-p,1,0,--+) +
¥5(0,-p,1,0,---) + ---. The terms after y,(1,0,---) give exactly the relations that
hold among the p-adic numbers --- b, b, and in particular allow one to reduce an
arbitrary sequence (b, by, ---) to a unique sequence with 0 < b; < p for all i. The
term y,(1,0,---) corresponds to the subgroup Z C Z,.

We come now to the main result of this section:

Theorem 3F.8. For a cW complex X which is the union of an increasing sequence
of subcomplexes X, C X, C --- there is an exact sequence

0 — Lm'n" ! (x;) — h"(X) 2 Im A" (X,) — 0

where h™ is any reduced or unreduced cohomology theory. For any homology theory

h, , reduced or unreduced, the natural maps 11_m h, (X;)—h, (X) are isomorphisms.

Proof: Let T be the mapping telescope of the inclusion sequence X, < X; < ---. This
is a subcomplex of X x [0, ) when [0, ) is given the CW structure with the integer
points as 0-cells. We have T ~ X since T is a deformation retract of Xx [0, ), as
we showed in the proof of Lemma 2.34 in the special case that X; is the i-skeleton of
X, but the argument works just as well for arbitrary subcomplexes X;.

Let T} C T be the union of the products X;x[i,i+ 1] for i odd, and let T, be
the corresponding union for i even. Thus T, n T, = [[; X; and T, U T, = T. For an
unreduced cohomology theory h™* we have then a Mayer-Vietoris sequence
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" (T)eh" (T,)—h""(T,nT,) — h"(T) — h"(T)) @ h'(T,) — h"(T, N T>)
2 2 2 2 2
I k" N(X,) —2— 1 (X)) — h(X) — T1 (X)) —2—TT, h'(X,)
The maps @ making the diagram commute are given by the formula @(---,g;,---) =
(-, (1)t (g;—p(gis1)), ), the p’s being the appropriate restriction maps. This
differs from ¢ only in the sign of its even coordinates, so if we change the isomor-
phism hk(".l"1 NT,) = l_[ihk(Xi) by inserting a minus sign in the even coordinates, we
canreplace @ by ¢ in the second row of the diagram. This row then yields a short ex-
act sequence 0— Coker § —H"(X;G) — Ker § — 0, finishing the proof for unreduced
cohomology.

The same argument works for reduced cohomology if we use the reduced tele-
scope obtained from T by collapsing {x,}x[0, ) to a point, for x, a basepoint
0-cell of X,. Then T; N T, = V; X; rather than [[; X;, and the rest of the argument
goes through unchanged. The proof also applies for homology theories, with direct
products replaced by direct sums in the second row of the diagram. As we noted
earlier, Ker 6 = 0 in the direct limit case, and Coker = 11_m O

Example 3F.9. As in Example 3F.3, consider the mapping telescope T for the sequence
of degree p maps S" —S" — ---. Letting T; be the union of the first i mapping cylin-
ders in the telescope, the inclusions T; < T, — - -- induce on H"(—;Z) the sequence

.—7-%57in Example 3F.7. From the theorem we deduce that H"! (T;7) =~ %/Z
and H*(T;Z) = 0 for k + n+1. Thus we have the rather strange situation that the CW
complex T is the union of subcomplexes T; each having cohomology consisting only
of a Z in dimension n, but T itself has no cohomology in dimension n and instead
has a huge uncountable group 2p /Z in dimension n + 1. This contrasts sharply with
what happens for homology, where the groups H,, (T;) ~ Z fit together nicely to give
H,(T) = Z[1/p].

Example 3F.10. A more reasonable behavior is exhibited if we consider the space
X = M(Z,~,n) in Example 3F.4 expressed as the union of its subspaces X;. By the
universal coefficient theorem, the reduced cohomology of X; with Z coefficients con-
pi = EXt(Zpi,
inclusion Z,; < Z,:.1 on H,,, and on Ext this induced map is a surjection Z,i.1 —Z,:
as one can see by looking at the diagram of free resolutions on the left:

sistsof a Z Z) in dimension n + 1. The inclusion X; — X;,; induces the

i

0—zts7—17,—0 0 — Ext(Z,:,Z) <— Hom(Z,Z) «— -+
lﬂ pitl ll’) lp T T]I
0—2t—>7—7,.—0 0 «— Ext(Z,i:,Z) «— Hom(Z,Z) — -+-

Applying Hom(—,Z) to this diagram, we get the diagram on the right, with exact
rows, and the left-hand vertical map is a surjection since the vertical map to the
right of it is surjective. Thus the sequence --- —H"*1(X,;Z)—H"*!(X,;Z) is the
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sequence in Example 3F.6, and we deduce that H" ! (X;2) ~ 2p, the p-adic integers,
and flk(X;Z) =0fork+n+1.

This example can be related to the 0 — g, (§")—H,(T)— H,(X)— 0
preceding one. If we view X as the map- I I Il
ping cone of the inclusion $" < T of one z Z[1/p] Ly~

end of the telescope, then the long exact . .
0—H"(S")—H"" (X)—H"(T)—0

Il [ 1
groups for the pair (T,S™) reduce to the 7 ip ip/Z

short exact sequences at the right.

sequences of homology and cohomology

From these examples and the universal coefficient theorem we obtain isomor-
phisms EXt(me,Z) = 270 and Ext(Z[1/p]l,2) =~ 2p/Z. These can also be derived
directly from the definition of Ext. A free resolution of 7. is

0—2°%7°—17,. —0

where Z% is the direct sum of an infinite number of Z’s, the sequences (x;, x5, ")
of integers all but finitely many of which are zero, and @ sends (x;,x,,---) to
(px, — X5, pX> — X3, -+). We can view @ as the linear map corresponding to the infi-
nite matrix with p’s on the diagonal, —1’s just above the diagonal, and 0’s everywhere
else. Clearly Ker = 0 since integers cannot be divided by p infinitely often. The im-
age of @ is generated by the vectors (p,0,---),(-1,p,0,---),(0,-1,p,0,---),--- SO
Coker @ =~ pr. Dualizing by taking Hom(—,Z), we have Hom(Z*,Z) the infinite di-
rect product of Z’s,and @™ (yy, ¥, +*) = (PY1,PY2 — Y1, PY3— V2, -+ +), correspond-
ing to the transpose of the matrix of @. By definition, Ext(Z,,Z) = Coker @*. The
image of @™ consists of the infinite sums v, (p,—1,0---) + ¥,(0,p,—1,0,-++) + - - -,
so Coker @™ can be identified with 217 by rewriting a sequence (z;,z,,---) as the
p-adic number ---z,z,;.

The calculation Ext(Z[1/p]l,7) =~ Z,/ Z is quite similar. A free resolution of
Z[1/p] can be obtained from the free resolution of me by omitting the first col-
umn of the matrix of @ and, for convenience, changing sign. This gives the for-
mula @(x,Xx,,--+) = (X1,X, — pX;,X3 — PX5,--+), with the image of @ generated
by the elements (1,-p,0,---), (0,1,-p,0,---),---. The dual map @™ is given by
@ (Y1, Yo, 1) = (¥ —PY2, Yo —PY3, - - +), and this has image consisting of the sums
y1(1,0--) + ¥, (-p,1,0,--+) + ¥3(0,-p,1,0,---) + -- -, s0o we get Ext(Z[1/p],Z) =
Coker ™ = 2,9/1. Note that ™ is exactly the map & in Example 3F.7.

It is interesting to note also that the map @ :Z” —Z% in the two cases Z,~ and
Z[1/p] is precisely the cellular boundary map Hn+1(X”“,X")—»Hn(X”,X”’l) for
the Moore space M(Z,~,n) or M(Z[1/p],n) constructed as the mapping telescope
of the sequence of degree p maps S"—S"— ..., with a cell e"™! attached to the
first $™ in the case of 7.
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More About Ext

The functors Hom and Ext behave fairly simply for finitely generated groups,
when cohomology and homology are essentially the same except for a dimension shift
in the torsion. But matters are more complicated in the nonfinitely generated case. A
useful tool for getting a handle on this complication is the following:

Proposition 3F.11. Given an abelian group G and a short exact sequence of abelian
groups 0— A— B— C— 0, there are exact sequences

0—Hom(G, A) —Hom(G, B) —Hom(G, C) — Ext(G,A) > Ext(G, B) = Ext(G,C)—0
0—Hom(C,G)—Hom(B, G) —Hom(A, G) = Ext(C, G) —Ext(B,G) = Ext(A,G)—0
Proof: A free resolution 0— F, —F,— G — 0 gives rise to a commutative diagram

0 — Hom(F,,A) — Hom(F,,B) — Hom(F,,C) — 0

0— Hom%Fl,A) — Homl(Fl,B) — Homl(Fl,C) —0
Since F, and F,; are free, the two rows are exact, as they are simply direct products
of copies of the exact sequence 0—A—B— C—0, in view of the general fact that
Hom(;G,, H) = [[;Hom(G;, H). Enlarging the diagram by zeros above and below,
it becomes a short exact sequence of chain complexes, and the associated long exact

sequence of homology groups is the first of the 0 0 0
two six-term exact sequences in the proposition. | | |

To obtain the other exact sequence we will 0— F,— F — F'—0
construct the commutative diagram at the right, | l , | .
where the columns are free resolutions and the 0— lfo — 11"0 - Iio —0
rows are exact. To start, let F,— A and Fy —C 0— A B C 0
be surjections from free abelian groups onto A l l |
and C. Then let F) = F,®F, with the obvious 0 0 0

maps in the second row, inclusion and projection. The map F)— B is defined on the
summand F, to make the lower left square commute, and on the summand F(')' itis
defined by sending basis elements of F; to elements of B mapping to the images of
these basis elements in C, so the lower right square also commutes. Now we have
the bottom two rows of the diagram, and we can regard these two rows as a short
exact sequence of two-term chain complexes. The associated long exact sequence of
homology groups has six terms, the first three being the kernels of the three vertical
maps to A, B, and C, and the last three being the cokernels of these maps. Since
the vertical maps to A and C are surjective, the fourth and sixth of the six homology
groups vanish, hence also the fifth, which says the vertical map to B is surjective. The
first three of the original six homology groups form a short exact sequence, and we
let this be the top row of the diagram, formed by the kernels of the vertical maps to
A, B, and C. These kernels are subgroups of free abelian groups, hence are also free.
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Thus the three columns are free resolutions. The upper two squares automatically
commute, so the construction of the diagram is complete.

The first two rows of the diagram split by freeness, so applying Hom(—, G) yields
a diagram

0 — Hom(F,,G) — Hom(F,,G) — Hom(F,,G) — 0

l l !

0 — Hom(F,/G) — Hom(F,,G) — Hom(F,,G) — 0

with exact rows. Again viewing this as a short exact sequence of chain complexes,
the associated long exact sequence of homology groups is the second six-term exact
sequence in the statement of the proposition. O

The second sequence in the proposition says in particular that an injection A— B
induces a surjection Ext(B,C) —Ext(A, C) for any C. For example, if A has torsion,
this says Ext(A,Z) is nonzero since it maps onto Ext(Z,,Z) = Z, for some n > 1.
The calculation Ext(me,Z) ~ 217 earlier in this section shows that torsion in A does
not necessarily yield torsion in Ext(A, Z), however.

Also useful are the formulas

EXt(@iAi,B) ~ l_[iEXt(Ai,B) EXt(A, @iBi) ~ @iEXt(A,Bl’)

whose proofs we leave as exercises. For example, since Q/Z = EBp Z,~ We obtain
Ext(Q/Z,7Z) = Hpip from the calculation Ext(me,Z) ~ z,. Then from the exact
sequence 0—-7Z—-Q—Q/Z—0 we get Ext(Q, 7Z) =~ (]_[p ip)/l using the second exact
sequence in the proposition.

In these examples the groups Ext(A, Z) are rather large, and the next result says
this is part of a general pattern:

Proposition 3F.12. If A is not finitely generated then either Hom(A, Z) or Ext(A,Z)
is uncountable. Hence if H,(X;Z) is not finitely generated then either H"™(X;Z) or
H"\(X:;Z) is uncountable.

Both possibilities can occur, as we see from the examples Hom(,7,2) ~ [[.,Z
and EXt(Z,~,2) ~ Z,,.

This proposition has some interesting topological consequences. First, it implies
that if a space X has PNI*(X;Z) = 0, then ﬁ* (X;Z) = 0, since the case of finitely
generated homology groups follows from our earlier results. And second, it says that
one cannot always construct a space X with prescribed cohomology groups H"(X;Z),
as one can for homology. For example there is no space whose only nonvanishing
H™(X;Z) is a countable nonfinitely generated group such as Q or Q/Z. Even in the
finitely generated case the dimension n = 1 is somewhat special since the group
H'(X;Z) ~ Hom(H, (X),Z) is always torsionfree.



Limits and Ext Section 3.F 319

—

Proof: Consider the map A £, A, a — pa, multiplication by the positive integer p.
Denote the kernel, image, and cokernel of this map by pA, pA, and Ap , respectively.
The short exact sequences 0—,A—A—pA—0 and 0—>pA—>A—A,—0 give two
six-term exact sequences involving Hom(—, Z) and Ext(—, Z). The parts of these exact
sequences we need are

0 — Hom(pA,Z) — Hom(A,Z) — Hom(, A, Z) = 0
Hom(pA,Z) — EXt(Ap, 7) — Ext(A,7)

where the term Hom( pA, Z) in the first sequence is zero since pA is a torsion group.

Now let p be a prime, so Ap is a vector space over Zp. If this vector space is
infinite-dimensional, it is an infinite direct sum of Zp 's and Ext(Ap, Z) is the direct
product of an infinite numbers of Zp’s, hence uncountable. Exactness of the sec-
ond sequence above then implies that one of the two adjacent terms Ext(A,Z) or
Hom(pA,Z) ~ Hom(A, Z) must be uncountable, so we are done when Ap is infinite.

At the other extreme is the possibility that A, = 0. This means that A = pA,
so every element of A is divisible by p. Hence if A is nontrivial, it then contains a
subgroup isomorphic to either Z[1/p] or Zr,m. We have seen that Ext(Z[1/p],Z) =
Z,/7 and Ext(Z,~,Z) =~ Z,,, an uncountable group in either case. As noted earlier, an
inclusion B — A induces a surjection Ext(A, Z) — Ext(B, Z), so it follows that Ext(A, Z)
is uncountable when A, = 0 and A # 0.

The remaining case that A, is a finite direct sum of Z,’s will be reduced to
the case A, = 0. Choose finitely many elements of A whose images in A, are
a set of generators, and let B C A be the subgroup generated by these elements.
Thus the map B,—A, induced by the inclusion B — A is surjective. The func-
tor A — A, is the same as A — A®Z,, so exactness of B—A—A/B—0 implies
exactness of Bp—>Ap—>(A/B)p—>O, and hence (A/B),[J = 0. If A is not finitely
generated, A/B is nonzero, so the preceding case implies that Ext(A/B,Z) is un-
countable. This implies that Ext(A,Z) is also uncountable via the exact sequence
Hom(B, Z) —Ext(A/B,Z) —Ext(A, Z), since Hom(B, Z) is finitely generated and there-
fore countable. O

From this proposition one might conjecture that cohomology groups with Z co-
efficients are either finitely generated or uncountable.

As was explained in §3.1, the functor Ext generalizes to a sequence of functors
Exty for modules over a ring R. In this generality the six-term sequences of Propo-
sition 3F.11 become long exact sequences of Extg groups associated to short exact
sequences of R-modules. These are derived in a similar fashion, by constructing short
exact sequences of free resolutions. There are also analogous long exact sequences
for the functors Torﬁ, specializing to six-term sequences when R = Z. These six-
term sequences are perhaps less useful than their Ext analogs, however, since Tor is
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less mysterious than Ext for nonfinitely generated groups, as it commutes with direct
limits, according to an exercise for §3.A.

Exercises

1. Given maps f;:X;— X;,, for integers i < 0, show that the ‘reverse mapping tele-
scope’ obtained by glueing together the mapping cylinders of the f;’s in the obvious
way deformation retracts onto Xj,. Similarly, if maps f;:X;— X;,, are given for all
i € Z, show that the resulting ‘double mapping telescope’ deformation retracts onto
any of the ordinary mapping telescopes contained in it, the union of the mapping
cylinders of the f;’s for i greater than a given number n.

2. Show that lim'G; = 0 if the sequence --- — G, —> G; —> G, satisfies the
Mittag-Leffler condition that for each i the images of the maps G,,,,— G; are inde-
pendent of n for sufficiently large n.

3. Show that Ext(A, Q) = 0 for all A. [Consider the homology with Q coefficients of
a Moore space M(A,n).]

4. An abelian group G is defined to be divisible if the map G — G, g — ng, is
surjective for all n > 1. Show that a group is divisible iff it is a quotient of a direct sum
of Q’s. Deduce from the previous problem that if G is divisible then Ext(A,G) = 0
for all A.

5. Show that Ext(A, Z) is isomorphic to the cokernel of Hom(A, Q) —Hom(A,Q/Z),
the map induced by the quotient map Q— Q/Z. Use this to get another proof that
Ext(pr,Z) ~ 2,0 for p prime.

6. Show that Ext(pr,Zp) = Zp.

7. Show that for a short exact sequence of abelian groups 0—A— B— C — 0, a Moore
space M (C,n) canberealized as a quotient M(B,n)/M (A, n). Applying the long exact
sequence of cohomology for the pair (M(B,n),M(A,n)) with any coefficient group
G, deduce an exact sequence

0—Hom(C,G)—Hom(B,G) —Hom(A, G) = Ext(C, G) = Ext(B,G) = Ext(A,G)—0

8. Show that for a Moore space M (G, n) the Bocksteinlong exact sequence in cohomol-
ogy associated to the short exact sequence of coefficient groups 0-A—B—C—0
reduces to an exact sequence

0—Hom(G, A) —Hom(G,B) —Hom(G, C) = Ext(G, A) = Ext(G, B) = Ext(G,C) —0

9. For an abelian group A let p:A— A be multiplication by p, and let ,A = Kerp,
pA =Imp,and A, = Cokerp as in the proof of Proposition 3F.12. Show that the six-
term exact sequences involving Hom(—, Z) and Ext(—, Z) associated to the short exact
sequences 0—,A—>A—pA—0 and 0—pA—A—A,—0 can be spliced together
to yield the exact sequence across the top of the following diagram
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Hom(pA,Z) — Ext(A,,7) — Ext(A,7) —F— Ext(A,7) — Ext(,A,Z) — 0

N 7
Ext(pA,Z)
o—»Hom(pA,Z)i»Hom(A,Z)—»o/ \‘0

where the map labeled ‘p’ is multiplication by p. Use this to show:
(a) Ext(A,7Z) is divisible iff A is torsionfree.
(b) Ext(A,Z) is torsionfree if A is divisible, and the converse holds if Hom(A,Z) = 0.

3.G Transfer Homomorphisms

There is a simple construction called ‘transfer’ that provides very useful informa-
tion about homology and cohomology of finite-sheeted covering spaces. After giving
the definition and proving a few elementary properties, we will use the transfer in the
construction of a number of spaces whose Z,, cohomology is a polynomial ring.

Let m: X— X be an n-sheeted covering space, for some finite n. In addition
to the induced map on singular chains 7, :Ck()? )— C(X) there is also a homomor-
phism in the opposite direction T: C, (X) — Cy, ()? ) which assigns to a singular simplex
o :A¥— X the sum of the n distinct lifts & : AK— X. This is obviously a chain map,
commuting with boundary homomorphisms, so it induces transfer homomorphisms
T :Hk(X;G)—>Hk()?;G) and *:H*(X:G) - H*(X;G) for any coefficient group G.
We focus on cohomology in what follows, but similar statements hold for homology
as well.

The composition 7,7 is clearly multiplication by 7, hence T*1* = n. This
has the consequence that the kernel of * :H*(X; G)— H*(X; G) consists of torsion
elements of order dividing n, since * () = 0 implies T*m* () = nx = 0. Thus the
cohomology of X must be ‘larger’ than that of X except possibly for torsion of order
dividing n. This can be a genuine exception as one sees from the examples of $™
covering RP™ and lens spaces. More generally, if S — X is any n-sheeted covering
space, then the relation T*7* = n implies that H*(X;Z) consists entirely of torsion
elements of order dividing n, apart from a possible Z in dimension m. (Since X is
a closed manifold, its homology groups are finitely generated by Corollaries A.8 and
A.9 in the Appendix.)

By studying the other composition 7w*T* we will prove:

Proposition 3G.1. Let t: X— X be an n-sheeted covering space defined by an ac-
tion of a group T on X. Then with coefficients in a field F whose characteristic is 0
or a prime not dividing n, the map * :Hk(X;F) —»Hk()?;F) is injective with image
the subgroup H* X;F)F consisting of classes « such that y*(x) = « forall y €T.
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Proof: We have already seen that elements of the kernel of 7t* have finite order
dividing n, so * is injective for the coefficient fields we are considering here. It
remains to describe the image of *. Note first that 77T, sends a singular simplex
A¥— X to the sum of all its images under the T-action. Hence 1* 7% () = Syer Y ()
for x € Hk(X;F). If « is fixed under the action of T on Hk()?;F),the sum Zyel" y* ()
equals n«, so if the coefficient field F has characteristic O or a prime not dividing n,
we can write & = T*7*(«/n) and thus « lies in the image of 7m*. Conversely, since
my =1 forall y € T, we have y*m* () = m* () for all «, and so the image of *
is contained in H* (X:; F)". 0

Example 3G.2. Let X =S' v S kK k> 1, with X the n-sheeted cover corresponding
to the index n subgroup of 1, (X), so X is a circle with n S*’s attached at equally
spaced points around the circle. The deck transformation group Z,, acts by rotating
the circle, permuting the skog cyclically. Hence for any coefficient group G, the in-
variant cohomology H* (X; )™ is all of H® and H', plus a copy of G in dimension
k, the cellular cohomology classes assigning the same element of G to each S¥. Thus
Hi()?;G)Z" is exactly the image of 7t for i = 0 and k, while the image of 7* in
dimension 1 is the subgroup nH'(X;G). Whether this equals H'(X;G)%* or not de-
pends on G. For G = Q or Z, with p not dividing n, we have equality, but not for
G =7 or Z, with p dividing n. In this last case the map m* is not injective on H'.

Spaces with Polynomial mod p Cohomology

An interesting special case of the general problem of realizing graded commuta-
tive rings as cup product rings of spaces is the case of polynomial rings 7, [xy, - - -, x,,]
over the coefficient field Z,,, p prime. The basic question here is, which sets of num-
bers d,,---,d,, arerealizable as the dimensions |x;| of the generators x;? From §3.2
we have the examples of products of CP®’s and HP*’s with d;’s equal to 2 or 4, for
arbitrary p, and when p = 2 we can also take RP*’s with d,’s equal to 1.

As an application of transfer homomorphisms we will construct some examples
with larger d;’s. In the case of polynomials in one variable, it turns out that these
examples realize everything that can be realized. But for two or more variables, more
sophisticated techniques are necessary to realize all the realizable cases; see the end
of this section for further remarks on this.

The construction can be outlined as follows. Start with a space Y already known
to have polynomial cohomology H*(Y;Zp) = Z,[¥,-+",¥,], and suppose there is
an action of a finite group I on Y. A simple trick called the Borel construction shows
that without loss of generality we may assume the action is free, defining a covering
space Y — Y /I'. Then by Proposition 3G.1 above, if p does not divide the order of T,
H*(Y/T;Z,) is isomorphic to the subring of Z,,[y, - - -, ,,] consisting of polynomials
that are invariant under the induced action of T on H*(Y; Zp). And in some cases
this subring is itself a polynomial ring.
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For example, if Y is the product of n copies of CP* then the symmetric group
%, acts on Y by permuting the factors, with the induced action on H*(Y;Zp) ~
Zp [¥1,+ -+, ¥,] permuting the y;’s. A standard theorem in algebra says that the
invariant polynomials form a polynomial ring Zp[ol, --+,0,] where o; is the ith
elementary symmetric polynomial, the sum of all products of i distinct y;’s. Thus
0; is a homogeneous polynomial of degree i. The order of X, is n! so the condition
that p not divide the order of I' amounts to p > n. Thus we realize the polynomial
ring Z,[xy,---,x,] with |x;| = 2i, provided that p > n.

This example is less than optimal since there happens to be another space, the
Grassmann manifold of #-dimensional linear subspaces of C*, whose cohomology
with any coefficient ring R is R[x,,---,x,] with |x;| = 2i, as we show in §4.D, so
the restriction p > n is not really necessary.

To get further examples the idea is to replace CP” by a space with the same
Z, cohomology but with ‘more symmetry,” allowing for larger groups I' to act. The
constructions will be made using K (7, 1) spaces, which were introduced in §1.B. For
a group 1 we constructed there a A-complex Brr with contractible universal cover
Etr. The construction is functorial: A homomorphism @:7m— 7 induces a map
B :Bmr—B1, Bp(lg,l 19, =[®g|---1p(g,)], satisfying the functor prop-
erties B(py) = BBy and B1 = 1. In particular, if I' is a group of automorphisms
of 1, then I' acts on BTr.

The other ingredient we shall need is the Borel construction, which converts an
action of a group I' on a space Y into a free action of I' on a homotopy equivalent
space Y’'. Namely, take Y’ = Y x ET with the diagonal action of T, y(y,z) = (yy,yz)
where T acts on ET as deck transformations. The diagonal action is free, in fact a
covering space action, since this is true for the action in the second coordinate. The
orbit space of this diagonal action is denoted Y X ET.

Example 3G.3. Let ™ = Z, and let I' be the full automorphism group Aut(Z,).
Automorphisms of Z, have the form x — mx for (m,p) = 1, so I is the multi-
plicative group of invertible elements in the field Z,,. By elementary field theory this
is a cyclic group, of order p — 1. The preceding constructions then give a covering
space K(Z,,1)—K(Z,,1)/T with H*(K(Zp,l)/r;Zp) ~ H*(K(Zp,l);Zp)r. We may
assume we are in the nontrivial case p > 2. From the calculation of the cup product
structure of lens spaces in Example 3.41 or Example 3E.2 we have H* (K(Zp, 1); Zp) =
Azn[cx]®zp[ﬁ] with |x| = 1 and |B] = 2, and we need to figure out how I' acts on
this cohomology ring.

Let y € T be a generator, say y(x) = mx. The induced action of y on m,K(Z,,, 1)
is also multiplication by m since we have taken K (Zp, 1) = BZp X ET and y takes an
edge loop [g] in BZ, to [y(g)] = [mg]. Hence y acts on H,(K(Z,,1);Z) by multi-
plication by m. It follows that y(x) = m« and y(B) = mp8 since Hl(K(Zp, 1);Zp) =
Hom(H, (K(Zp, 1)), Zp) and HZ(K(Zp, 1); Zp) ~ Ext(H, (K(Zp, 1)), Zp), and it is a gen-
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eral fact, following easily from the definitions, that multiplication by an integer m in
an abelian group H induces multiplication by m in Hom(H, G) and Ext(H,G).

Thus y(Bk) = kak and y((ka) = mk“aBk. Since m was chosen to be a
generator of the multiplicative group of invertible elements of Z,,, it follows that the
only elements of H* (K(Zp, 1); Zp) fixed by y, hence by I, are the scalar multiples of
P~V and xB!?~V-1 Thus H* (K(Z,,1); Z,l,)r =17z, [xpP~?1® z, [BP1], so we have
produced a space whose Z, cohomology ring is Azp [xzp_3] ®Z, [yzp_z], subscripts
indicating dimension.

Example 3G.4. As an easy generalization of the preceding example, replace the group
I' there by a subgroup of Aut(Z,) of order d, where d is any divisor of p — 1. The

new I' is generated by the automorphism x — mp-D/d

x, and the same analysis
shows that we obtain a space with Z,, cohomology Az, [x>;3 11®Z,[y>4], subscripts
again denoting dimension. For a given choice of d the condition that d divides p — 1
says p = 1 mod d, which is satisfied by infinitely many p’s, according to a classical

theorem of Dirichlet.

Example 3G.5. The two preceding examples can be modified so as to eliminate the
exterior algebra factors, by replacing 7, by Z,,~, the union of the increasing sequence
Z, CZ, C1Zy C ---. The first step is to show that H* (K(Z,~,1);Z,,) ~ Z,[B] with
|Bl = 2. We know that H, (K(Z
clusion 7, — 7

pis 1);Z) consists of Zpi 's in odd dimensions. The in-
pi+1 induces amap K(Z,i, 1) > K(Z,i1,1) thatis unique up to homo-
topy. We can take this map to be a p-sheeted covering space since the covering space
of a K(me, 1) corresponding to the unique index p subgroup of an(Zle, 1) isa
K(Z,:,1). The homology transfer formula 1, 7, = p shows that the image of the in-
duced map Hn(K(Zpi, 1);7) —>Hn(K(Zp,-,+1, 1);7Z) for n odd contains the multiples of
p, hence this map is the inclusion Z,,: — Z,,:.. . We canuse the universal coefficient the-
orem to compute the induced map H* (K(Zis1,1)52,) —H* (K(Z,:,1);2,). Namely,
the inclusion Z,; — Z,.1 induces the trivial map Hom(Zi1,Z,,) —-Hom(Z,:,Z,), so
on odd-dimensional cohomology the induced map is trivial. On the other hand, the
induced map on even-dimensional cohomology is an isomorphism since the map of
free resolutions .
14

0O—2——272—172,,—0

pi

bl b

0—2—2Z—Z,in—0
dualizes to

0 «— Ext(Z,:,Z,) “— Hom(Z,Z,) > Hom(Z,Z,)

I In I

0 — Ext(Z,1,7,) — Hom(Z,Z,) >~ Hom(Z,Z,,)

Since Z,~ is the union of the increasing sequence of subgroups Z,,:, the space BZ,,~ is
the union of the increasing sequence of subcomplexes BZ,:. We can therefore apply
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Proposition 3F.5 to conclude that H* (K (Zpoo, 1); Zp) is zero in odd dimensions, while
in even dimensions the map H*(K(Z,«,1);Z,)—H"*(K(Z,,1);Z,) induced by the
inclusion Zp — pr is an isomorphism. Thus H*(K(pr, 1);Zp) = ZP[B] as claimed.

Next we show that the map Aut(Z,~)—Aut(Z,) obtained by restriction to the
subgroup Z,, C Z,~ is a split surjection. Automorphisms of Z,; are the maps x — mx
for (m,p) = 1, so the restriction map Aut(Z,:.1) —Aut(Z,:) is surjective. Since
Aut(me) = @Aut(lp,t), the restriction map Aut(pr)—>Aut(Zp) is also surjec-
tive. The order of Aut(Z,:), the multiplicative group of invertible elements of 7, is
p'—p ! = pH(p-1) and p — 1 is relatively prime to p'~!, so the abelian group
Aut(Z,:) contains a subgroup of order p — 1. This subgroup maps onto the cyclic
group Aut(Zp) of the same order, so Aut(Zpi)—>Aut(Zp) is a split surjection, hence
o is Aut(Z,~)—Aut(Z,).

Thus we have an action of I' = Aut(Z,) on BZ,. extending its natural action
on BZ,. The Borel construction then gives an inclusion BZ, X EI' — BZ,~ X ET
inducing an isomorphism of H* (BZ,~ Xy ET;Z,,) onto the even-dimensional part of
H* (BZ, xyET;Z,), a polynomial algebra Z,[y,,_,]. Similarly, if d is any divisor of
p — 1, then taking I to be the subgroup of Aut(Z,) of order d yields a space with Z,,
cohomology the polynomial ring Z,,[y,,].

Example 3G.6. Now we enlarge the preceding example by taking products and bring-
ing in the permutation group to produce a space with Z, cohomology the polyno-
mial ring 7, (Y24, Y44, "+ Yonal Where d is any divisor of p — 1 and p > n. Let
X be the product of n copies of BZ,. and let I' be the group of homeomorphisms
of X generated by permutations of the factors together with the actions of Z; in
each factor constructed in the preceding example. We can view I' as a group of
nxn matrices with entries in Z,, the matrices obtained by replacing some of the
1’s in a permutation matrix by elements of Z, of multiplicative order a divisor of
d. Thus there is a split short exact sequence 0— (Z;)" —T'—3, —0, and the order
of T is d"n!. The product space X has H*(X;Zp) ~ Z,[By, -+, By] with |B;] = 2,
so H* (X xET; Z,) = Z,By,--- ,Bn]r provided that p does not divide the order of
I', which means p > n. For a polynomial to be invariant under the Z,; action in
each factor it must be a polynomial in the powers B‘Zl, and to be invariant under
permutations of the variables it must be a symmetric polynomial in these powers.
Since symmetric polynomials are exactly the polynomials in the elementary symmet-
ric functions, the polynomials in the §;’s invariant under I' form a polynomial ring
Ly YoasYVadr "+ » YVonal With ;. the sum of all products of k distinct powers ﬁ‘ii.

Example 3G.7. As a further variant on the preceding example, choose a divisor g
of d and replace T by its subgroup consisting of matrices for which the product of
the gt powers of the nonzero entries is 1. This has the effect of enlarging the ring
of polynomials invariant under the action, and it can be shown that the invariant
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polynomials form a polynomial ring z, [Vods Vags
generator ¥,,, replaced by ¥,,, =

s Y2(n-1)d» Yangl, With the last
HiB?. For example, if n = 2 and q = 1 we obtain
7,[y4, ¥24] wWith v, = B, B, and y,4 = B{ + B3. The group T in this case happens to
be isomorphic to the dihedral group of order 24d.

General Remarks

The problem of realizing graded polynomial rings Z,[] in one variable as cup
product rings of spaces was discussed in §3.2, and Example 3G.5 provides the re-
maining examples, showing that |y| can be any even divisor of 2(p — 1). In more
variables the problem of realizing Z,[y,,-- -, ¥, ] with specified dimensions |y;| is
more difficult, but has been solved for odd primes p. Here is a sketch of the answer.

Assuming that p is odd, the dimensions |y;| are even. Call the number d; =
|y;1/2 the degree of y,. In the examples above this was in fact the degree of y; as
a polynomial in the 2-dimensional classes B; invariant under the action of T'. It was
proved in [Dwyer, Miller, & Wilkerson 1992] that every realizable polynomial algebra
Z,[y,--+,¥y,] is the ring of invariant polynomials Z,[f, - -

some finite group I' on Z,[B;,---

,B,1" for an action of
, 8,1, where |B;| = 2. The basic examples, whose
products yield all realizable polynomial algebras, can be divided into two categories.
First there are classifying spaces of Lie groups, each of which realizes a polynomial
algebra for all but finitely many primes p. These are listed in the following table.

Lie group degrees primes
st 1 all
SU(n) 2,3, all
Sp(n) 2,4, - 2n all

SO (2k) 2,4,---,2k -2,k p>2
G, 2,6 p>2
F, 2,6,8,12 p>3
Eg 2,5,6,8,9,12 p>3
E, 2,6,8,10,12,14 p>3
Eq 2,8,12,14,18, 20, 24,30 p>5

The remaining examples have to be constructed by hand. They form two infinite
families plus 30 sporadic exceptions shown in the table on the next page. The first
row is the examples we have constructed, though our construction needed the extra
condition that p not divide the order of the group I'. For all entries in both tables
the order of T, the group such that Z,[y,,---,¥,] = Z,[B;, - ,B,1", turns out to
equal the product of the degrees. When p does not divide this order, the method we
used for the first row can also be applied to give examples for all the other rows. In
some cases the congruence conditions on p, which are needed in order for I' to be
a subgroup of Aut(Z’;) = GLn(Zp), automatically imply that p does not divide the
order of I'. But when this is not the case a different construction of a space with the
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desired cohomology is needed. To find out more about this the reader can begin by
consulting [Kane 1988] and [Notbohm 1999].

degrees | primes

a,2d,---,(n—-1)d,nq with q |d p=1modd

2,d p=-1modd

degrees | primes degrees primes

4,6 p =1mod 3 60,60 p =1 mod 60
6,12 p =1mod 3 12,30 p =1,4mod 15
4,12 p =1mod 12 12,60 p = 1,49 mod 60
12,12 p =1mod 12 12,20 p = 1,9 mod 20
8,12 p =1 mod 4 2,6,10 p=1,4mod>5
8,24 p =1mod 8 4,6,14 p=1,24mod 7
12,24 p =1mod 12 6,9,12 p =1 mod 3
24,24 p = 1 mod 24 6,12,18 p =1 mod 3

6,8 p=1,3mod8 6,12,30 p =1,4mod 15
8,12 p =1 mod 8 4,8,12,20 p =1 mod 4
6,24 p =1,19 mod 24 2,12,20,30 p =1,4mod 5
12,24 p =1 mod 24 8,12,20,24 p =1 mod 4
20,30 p =1 mod 5 12,18, 24,30 p =1mod 3
20,60 p =1 mod 20 4,6,10,12,18 p =1 mod 3
30,60 p =1 mod 15 6,12,18,24,30,42 p =1mod 3

For the prime 2 the realization problem is still not completely solved. The known

examples are listed in the short table at the right,

where again we give only the irreducible examples,

which generate others by taking products. All but the
last entry in the table arise from classifying spaces of

Lie groups, as described in §4.D. The construction for
the last entry is in [Dwyer & Wilkerson 1993].

3.JH Local Coefficients

Homology and cohomology with local coefficients are fancier versions of ordi-

Lie group | degrees
o(1) 1

SO(n) 2,3, n

SUm) 4,6,---,2n

Sp(n) 4,8,---,4n
— 8,12,14,15

nary homology and cohomology that can be defined for nonsimply-connected spaces.

In various situations these more refined homology and cohomology theories arise

naturally and inevitably. For example, the only way to extend Poincaré duality with

Z coefficients to nonorientable manifolds is to use local coefficients. In the overall
scheme of algebraic topology, however, the role played by local coefficients is fairly
small. Local coefficients bring an extra level of complication that one tries to avoid
whenever possible. With this in mind, the goal of this section will not be to give a full

exposition but rather just to sketch the main ideas, leaving the technical details for
the interested reader to fill in.
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The plan for this section is first to give the quick algebraic definition of homology
and cohomology with local coefficients, and then to reinterpret this definition more
geometrically in a way that looks more like ordinary homology and cohomology. The
reinterpretation also allows the familiar properties of homology and cohomology to
be extended to the local coefficient case with very little effort.

Local Coefficients via Modules

Let X be a path-connected space having a universal cover X and fundamental
group T, so that X is the quotient of X by the action of 1 by deck transforma-
tions X — y.X for y € w and ¥ € X. The action of  on X induces an action of
1T on the group Cn()? ) of singular n-chains in X, by sending a singular n-simplex
0 :A"— X to the composition A" -%> X - X. The action of 1 on Cn()?) makes
Cn()? ) a module over the group ring Z[1r], which consists of the finite formal sums
>im;y; with m; € Z and y; € m, with the natural addition >; m;y; + >;n;y; =
>.i (m; + n;)y; and multiplication (X; m;y;) (3;n;y;) = X, jm;n;y;y;. The bound-
ary maps 0:C,(X)—C,,_; (X) are Z[m]-module homomorphisms since the action of
7 on these groups comes from an action on X.

If M is an arbitrary module over Z[1r], we would like to define C, (X;M) to be
Cn()? )® 71 M, but for tensor products over a noncommutative ring one has to be a
little careful with left and right module structures. In general, if R is a ring, possibly
noncommutative, one defines the tensor product A®yB of a right R-module A and a
left R-module B to be the abelian group with generators a® b for a € A and b € B,
subject to distributivity and associativity relations:

(i) (a; +a,)eb=a,9b+a,eb and ase (b, +b,) =aeb, +asb,.

(i) areb=aerb.

In case R = Z[mr], a left Z[mr]-module A can be regarded as a right Z[7r]-module
by setting ay = y 'a for y € . So the tensor product of two left Z[mr]-modules
A and B is defined, and the relation ay b = a® yb becomes y 'aeb = asyb, or
equivalently a’ @b = ya' ® yb where a’ = y 'a. Thus tensoring over Z[mr] has the
effect of factoring out the action of 7r. To simplify notation we shall write A®;(,\B
as A®_ B, emphasizing the fact that the essential part of a Z[r]-module structure is
the action of 7.

In particular, Cn()?') ®,.M is defined if M is a left Z[mr]-module. These chain
groups C,(X;M) = Cn()?) ®,M form a chain complex with the boundary maps 0 1.
The homology groups H,,(X;M) of this chain complex are by definition homology
groups with local coefficients.

For cohomology one can set C"(X; M) = Homy(;(C,(X),M), the Z[1r]-module
homomorphisms Cn()?) — M. These groups C"(X; M) form a cochain complex whose
cohomology groups H™(X; M) are cohomology groups with local coefficients.
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Example 3H.1. Let us check that when M is a trivial Z[7r]-module, with ym = m for
all y e mand m € M, then H, (X; M) is just ordinary homology with coefficients in
the abelian group M. For a singular n-simplex o : A" — X, the various lifts ¢ : A" —X
form an orbit of the action of 7 on C,,(X). In C,(X)®, M all these lifts are identi-
fied via the relation 0 ®m = yo ® ym = yod ®m. Thus we can identify Cn()?) ®. M
with C,,(X)®M, the chain group denoted C,,(X;M) in ordinary homology theory, so
H,, (X; M) reduces to ordinary homology with coefficients in M. The analogous state-
ment for cohomology is also true since elements of Homgy,(C,, (X), M) are functions
from singular n-simplices 7 : A"—X to M taking the same value on all elements of
a tr-orbit since the action of ™ on M is trivial, so Homl[,ﬂ(Cn()? ), M) is identifiable
with Hom(C,,(X), M), ordinary cochains with coefficients in M.

Example 3H.2. Suppose we take M = Z[1], viewed as a module over itself via its
ring structure. For a ring R with identity element, A®yR is naturally isomorphic
to A via the correspondence a®v — ar. So we have a natural identification of
Cn()?) ® Z[1r] with Cn()?), and hence an isomorphism H,,(X;Z[m]) = Hn()?). Gen-
eralizing this, let X' — X be the cover corresponding to a subgroup 7' C 1. Then
the free abelian group Z[m/m’] with basis the cosets ym’ is a Z[1]-module and
Cn()N() ®mZlm/m'] = Cy(X'), s0 Hy(X;Z[1r/m']) = H, (X"). More generally, if A is
an abelian group then A[7r/7m’] is a Z[mr]-module and H,,(X; A[1t/mt']) ~ H,,(X; A).
So homology of covering spaces is a special case of homology with local coefficients.
The corresponding assertions for cohomology are not true, however, as we shall see
later in the section.

For a Z[mr]-module M, let 7t’ be the kernel of the homomorphism p : T — Aut(M)
defining the module structure, given by p(y)(m) = ym, where Aut(M) is the group
of automorphisms of the abelian group M. If X' — X is the cover corresponding to
the normal subgroup 7’ of 1, then C,(X)®, M ~ C,(X')®, M ~ Cp(X') @/ M.
This gives a more efficient description of H, (X;M).

Example 3H.3. As a special case, suppose that we take M = 7, s0 Aut(Z) ~ Z, = {+1}.
For anontrivial Z[1]-module structure on M, 7r’ is a subgroup of index 2 and X' — X
is a 2-sheeted covering space. If T is the nontrivial deck transformation of X’, let
Ch(X') = {ae Cp(X) | T,(00) = &} and C, (X') = {x € C(X) | Ty(x) = —ax}. Tt
follows easily that C, (X’) has basis the chains o + 7o for ¢:A" — X', and we have
short exact sequences

0—C, (X') o Cy(X) = CH(X')—0

0—CHX') o> Cy(X') = Cr (X)) —0
where 3(x) = a+T,(x) and A(x) = x—T, (). The homomorphism C, (X) —C, (X")
sending a singular simplex in X to the sum of its two lifts to X’ is an isomorphism.

The quotient map C, (X')—C, (X') ®,Z has kernel C,; (X'), so the second short ex-
act sequence gives an isomorphism C,, (X') ~ C,,(X’) ®,Z. These isomorphisms are
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isomorphisms of chain complexes and the short exact sequences are short exact se-
quence of chain complexes, so from the first short exact sequence we get a long exact
sequence of homology groups

- —H,(X;7) > H,(X') 25 H,(X) = H, | (X;7) — -

where the symbol Z indicates local coefficients in the module Z and p, is induced
by the covering projection p: X — X.

Let us apply this exact sequence when X is a nonorientable n-manifold M which
is closed and connected. We shall use terminology and notation from §3.3. We can
view Z as a Z[m;M]-module by letting a loop y in M act on Z by multiplication
by +1 or —1 according to whether y preserves or reverses local orientations of M.
The double cover X’ — X is then the 2-sheeted cover M— M with M orientable. The
nonorientability of M implies that H,,(M) = 0. Since H, (M) = 0, the exact se-
quence above then gives Hn(M;i) ~ Hn(]\N/I) ~ 7. This can be interpreted as saying
that by taking homology with local coefficients we obtain a fundamental class for a
nonorientable manifold.

Local Coefficients via Bundles of Groups

Now we wish to reinterpret homology and cohomology with local coefficients in
more geometric terms, making it look more like ordinary homology and cohomology.

Let us first define a special kind of covering space with extra algebraic structure.
A bundle of groups is a map p : E— X together with a group structure on each subset
p’l (x), such that all these groups p’l (x) are isomorphic to a fixed group G in the
following special way: Each point of X has a neighborhood U for which there exists
a homeomorphism hU:p’l(U)—>U><G taking each p’l(x) to {x}xG by a group
isomorphism. Since G is given the discrete topology, the projection p is a covering
space. Borrowing terminology from the theory of fiber bundles, the subsets p ' (x)
are called the fibers of p:E— X, and one speaks of E as a bundle of groups with
fiber G. It may be worth remarking that if we modify the definition by replacing the
word ‘group’ with ‘vector space’ throughout, then we obtain the much more common
notion of a vector bundle; see [VBKT].

Trivial examples are provided by products E = XX G. Nontrivial examples we
have considered are the covering spaces M;— M of nonorientable manifolds M de-
fined in §3.3. Here the group G is the homology coefficient group 7, though one could
equally well define a bundle of groups M;— M for any abelian coefficient group G.

Homology groups of X with coefficients in a bundle E of abelian groups may
be defined as follows. Consider finite sums >; n;0; where each 0;:A" — X is a sin-
gular n-simplex in X and n,;:A"—E is a lifting of o;. The sum of two lifts n;
and m; of the same o; is defined by (n; + m;)(s) = n;(s) + m;(s), and is also a
lift of o;. In this way the finite sums >; n;0; form an abelian group C, (X;E), pro-
vided we allow the deletion of terms n;0; when n; is the zero-valued lift. A bound-
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ary homomorphism 0:C,,(X;E)— C,_, (X;E) is defined by the formula 0(>,; n;0;) =
Zi,j(—l)jni(ri [[vg,---, 7}, ---,v,] where ‘n;” in the right side of the equation means
the restricted lifting n;|[vg,---,?;, -+, v,]. The proof that the usual boundary ho-
momorphism 0 satisfies 9° = 0 still works in the present context, so the groups
C,,(X;E) form a chain complex. We denote the homology groups of this chain com-
plex by H,(X;E).

In case E is the product bundle XX G, lifts n; are simply elements of G, so
H,(X;E) = H,(X;G), ordinary homology. In the general case, lifts ni:A"—>E are
uniquely determined by their value at one point s € A", and these values can be
specified arbitrarily since A" is simply-connected, so the n;’s can be thought of as
elements of p’l((ri(s)), a group isomorphic to G. However if E is not a product,
there is no canonical isomorphism between different fibers p’l(x), SO one cannot
identify H,, (X;E) with ordinary homology.

An alternative approach would be to take the coefficients n; to be elements of
the fiber group over a specific point of o;(A"), say o;(v,). However, with such a
definition the formula for the boundary operator 0 becomes more complicated since
there is no point of A" that lies in all the faces.

Our task now is to relate the homology groups H,,(X;E) to homology groups
with coefficients in a module, as defined earlier. In §1.3 we described how covering
spaces of X with a given fiber F can be classified in terms of actions of 1, (X) on F,
assuming X is path-connected and has the local properties guaranteeing the existence
of auniversal cover. It is easy to check that covering spaces that are bundles of groups
with fiber a group G are equivalent to actions of 1, (X) on G by automorphisms of
G, that is, homomorphisms from 1 (X) to Aut(G).

For example, for the bundle M;— M the action of a loop y on the fiber Z is
multiplication by +1 according to whether y preserves or reverses orientation in
M, that is, whether y lifts to a closed loop in the orientable double cover M—M
or not. As another example, the action of 77;(X) on itself by inner automorphisms
corresponds to a bundle of groups p:E— X with fibers p’l(x) = 11,(X,x). This
example is rather similar in spirit to the examples M;— M. In both cases one has a
functor associating a group to each point of a space, and all the groups at different
points are isomorphic, but not canonically so. Different choices of isomorphisms are
obtained by choosing different paths between two points, and loops give rise to an
action of r; on the fibers.

In the case of bundles of groups p : E— X whose fiber G is abelian, an action of
1, (X) on G by automorphisms is the same as a Z[1; X]-module structure on G.

Proposition 3H.4. If X is a path-connected space having a universal covering space,
then the groups H,,(X; E) are naturally isomorphic to the homology groups H,,(X; G)
with local coefficients in the Z[1t]-module G associated to E, where 1t = 11, (X).
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Proof: As noted earlier, a bundle of groups E— X with fiber G is equivalent to
an action of 71 on G. In more explicit terms this means that if X is the universal
cover of X, then E is identifiable with the quotient of XxG by the diagonal action
of 1, y(X,g) = (yX,yg) where the action in the first coordinate is by deck trans-
formations of X. For a chain >, n,;0; € C,(X;E), the coefficient n; gives a lift of
0; to E, and n; in turn has various lifts to XxG. Thus we have natural surjec-
tions Cn()?x G)—C,(E)—C,(X;E) expressing each of these groups as a quotient of
the preceding one. More precisely, identifying Cn(}? X G) with Cn()? )®Z[G] in the
obvious way, then C, (E) is the quotient of Cn()? )®Z[G] under the identifications
o0e®g ~y-0ey-g. This quotient is the tensor product Cn()?) ®.Z[G]. To pass to
the quotient C,,(X;E) of C,(E) = Cn()?) ®,.Z[G] we need to take into account the
sum operation in C, (X;E), addition of lifts n;:A"™ —E. This means that in sums
0eg, +08g, =0e(g, +9,), the term g, + g, should be interpreted not in Z[G]
but in the natural quotient G of Z[G]. Hence C, (X;E) is identified with the quo-
tient Cn()N( )®,.G of Cn()? )®,Z[G]. This natural identification commutes with the
boundary homomorphisms, so the homology groups are also identified. a

More generally, if X has a number of path-components X, with universal covers
X,, then C,(X;E) = D, (C,(X,) ®21m (xo01G)» 80 Hy, (X;E) splits accordingly as a
direct sum of the local coefficient homology groups for the path-components X,,.

We turn now to the question of whether homology with local coefficients satisfies
axioms similar to those for ordinary homology. The main novelty is with the behav-
ior of induced homomorphisms. In order for a map f:X— X  to induce a map on
homology with local coefficients we must have bundles of groups E— X and E' — X’
that are related in some way. The natural assumption to make is that there is a com-

mutative diagram as at the right, such that f restricts to a homo- 7 ,
morphism in each fiber. With this hypothesis there is then a chain ]fp pr,
homomorphism f,:C,(X;E)—C,(X;E’) obtained by composing f e

singular simplices with f and their lifts with f hence there is an
induced homomorphism f, :H, (X;E)— H, (X';E’). The fibers of E and E’ need not
be isomorphic groups, so in the case of trivial bundles this construction specializes
to Bockstein homomorphisms. To avoid this extra complication we shall consider
only the case that f restricts to an isomorphism on each fiber. With this condition, a
commutative diagram as above will be called a bundle map.

Here is a method for constructing bundle maps. Starting with a map f:X—X’
and a bundle of groups p':E'— X', let

E={(x,e) e XxE | f(x)=p'(e)}.

This fits into a commutative diagram as above if we define p(x,e’) = x and f(x, e') =
¢’ . In particular, the fiber p~!(x) consists of pairs (x,e’) with p'(e’) = f(x), so f
is a bijection of this fiber with the fiber of E'— X’ over f(x). We use this bijection
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to give p’l (x) a group structure. To check that p:E— X is a bundle of groups, let
h':(p")"N(U')— U’ x G be an isomorphism as in the definition of a bundle of groups.
Define h:p ' (U)—UxG over U = f 1 (U’) by h(x,e’) = (x,hy(e’)) where h) is
the second coordinate of h’. An inverse for h is (x,g) € (x, (W) (f(x),g)),and h
is clearly an isomorphism on each fiber. Thus p :E— X is a bundle of groups, called
the pullback of F'— X' via f, or the induced bundle. The notation f*(E’) is often
used for the pullback bundle.

Given any bundle map E—FE  as in the diagram above, it is routine to check
that the map E— f*(E'), e — (p(e),f(e)), is an isomorphism of bundles over X,
so the pullback construction produces all bundle maps. Thus we see one reason
why homology with local coefficients is somewhat complicated: H, (X;E) is really a
functor of two variables, covariant in X and contravariant in E.

Viewing bundles of groups over X as Z[m; X]-modules, the pullback construc-
tion corresponds to making a Z[m X "J-module into a Z[1r; X]-module by defining
yg = f.(y)g for f :1m(X)—1(X"). This follows easily from the definitions. In
particular, this implies that homotopic maps f;, f; : X — X' induce isomorphic pull-
back bundles f(E'), f;*(E"). Hence the map f,:H,(X;E)—H, (X;E") induced by
a bundle map depends only on the homotopy class of f.

Generalizing the definition of H,, (X; E) to pairs (X, A) is straightforward, starting
with the definition of H,, (X, A;E) as the n'* homology group of the chain complex
of quotients C, (X;E)/C, (A;E) where p:E— X becomes a bundle of groups over A
by restriction to p’l(A). Associated to the pair (X,A) there is then a long exact
sequence of homology groups with local coefficients in the bundle E. The excision
property is proved just as for ordinary homology, via iterated barycentric subdivision.
The final axiom for homology, involving disjoint unions, extends trivially to homology
with local coefficients. Simplicial and cellular homology also extend without difficulty
to the case of local coefficients, as do the proofs that these forms of homology agree
with singular homology for A-complexes and CW complexes, respectively. We leave
the verifications of all these statements to the energetic reader.

Now we turn to cohomology. One might try defining H" (X;E) by simply dual-
izing, taking Hom(C,,(X), E), but this makes no sense since E is not a group. In-
stead, the cochain group C"(X;E) is defined to consist of all functions @ assigning
to each singular simplex o :A"—X a lift ¢(0):A"—E. In case E is the product
X X G, this amounts to assigning an element of G to each o, so this definition gen-
eralizes ordinary cohomology. Coboundary maps 6:C"(X;E)—>C”“(X;E) are de-
fined just as with ordinary cohomology, and satisfy 6> = 0, so we have cohomology
groups H™(X;E), and in the relative case, H" (X, A; E), defined via relative cochains
C"(X,A;E) =Ker(C"(X;E)—>C"(AE)).

For a path-connected space X with universal cover X and fundamental group
T, we can identify H" (X; E) with H"(X; G), cohomology with local coefficients in the
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Z[tt]-module G corresponding to E, by identifying C"(X; E) with Homy; (Cn()?), G)
in the following way. An element @ € C"X;E) assigns to each :A" — X alift to E.
Regarding E as the quotient of X x G under the diagonal action of 1, a lift of o to
E is the same as an orbit of a lift to Xx G. Such an orbit is a function f assigning to
each lift &:A"— X an element f(&) € G such that f(y&) = yf(&) forall y € G,
that is, an element of Homy(C,(X),G).

The basic properties of ordinary cohomology in §3.1 extend without great dif-
ficulty to cohomology groups with local coefficients. In order to define the map
f*:H™"(X';E'") > H"(X;E) induced by a bundle map as before, it suffices to observe
that a singular simplex o:A" —X and a lift ' :A"—E’ of fo define a lift & =
(0,0"):A"— f*(E) of o. To show that f = g implies f* = g* requires some mod-
ification of the proof of the corresponding result for ordinary cohomology in §3.1,
which proceeded by dualizing the proof for homology. In the local coefficient case
one constructs a chain homotopy P* satisfying g* — f* = P*§+6P* directly from the
subdivision of A" x I used in the proof of the homology result. Similar remarks apply
to proving excision and Mayer-Vietoris sequences for cohomology with local coeffi-
cients. To prove the equivalence of simplicial and cellular cohomology with singular
cohomology in the local coefficient context, one should use the telescope argument
from the proof of Lemma 2.34 to show that H™"(X* E) ~ HY(X;E) for k > n. Once
again details will be left to the reader.

The difference between homology with local coefficients and cohomology with lo-
cal coefficients is illuminated by comparing the following proposition with our earlier
identification of H, (X;Z[m,X]) with the ordinary homology of the universal cover
of X.

Proposition 3H.5. If X is a finite CW complex with universal cover X and funda-
mental group 1T, then for all n, H" (X;Z[1r]) is isomorphic to H?()?; 7), cohomology
of X with compact supports and ordinary integer coefficients.

For example, consider the the n-dimensional torus T", the product of n circles,
with fundamental group 1 = Z" and universal cover R". We have Hi(T";Z[Tr]) =~
H;(R™), which is zero except for a Z in dimension 0, but HYT™ Z[T]) ~ Hé([R")
vanishes except for a Z in dimension n, as we saw in Example 3.34.

To prove the proposition we shall use a few general facts about cohomology
with compact supports. One significant difference between ordinary cohomology
and cohomology with compact supports is in induced maps. A map f:X—Y in-
duces f#:C"(Y;G)— C"(X;G) and hence f*:H!"(Y;G)— H"(X;G) provided that f
is proper: The preimage f '(K) of each compact set K in Y is compact in X. Thus
if @ € C"(Y;G) vanishes on chains in Y — K then f*(@p) € C"(X;G) vanishes on
chains in X — f~!(K). Further, to guarantee that f ~ g implies f* = g* we should
restrict attention to homotopies that are proper as maps X xI—Y . Relative groups
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HZ‘(X ,A;G) are defined when A is a closed subset of X, which guarantees that the
inclusion A — X is a proper map. With these constraints the basic theory of §3.1
translates without difficulty to cohomology with compact supports.

In particular, for a locally compact CW complex X one can compute H) (X;G)
using finite cellular cochains, the cellular cochains vanishing on all but finitely many
cells. Namely, to compute H/' (X", X" ';G) using excision one first has to identify
this group with HC”(X”,N(X”’I);G) where N(X"1) is a closed neighborhood of
X" in X" obtained by deleting an open n-disk from the interior of each n-cell. If
X is locally compact, the obvious deformation retraction of N (X”’l) onto X" ! is
a proper homotopy equivalence. Hence via long exact sequences and the five-lemma
we obtain isomorphisms H/' (X", X"6) ~ HM(X™, N(X"1):G), and by excision the
latter group can be identified with the finite cochains.

Proof of 3H.5: As noted above, we can compute HC* ()?' ;Z) using the groups C}l()?' 1 7)
of finite cellular cochains @:C,, —Z, where C, = Hn()?”,)?"’l). Giving X the CW
structure lifting the CW structure on X, then since X is compact, finite cellular
cochains are exactly homomorphisms @ :C, —Z such that for each cell e" of X,
@ (ye™) is nonzero for only finitely many covering transformations y € 1. Such a
@ determines a map @:C,, —Z[r] by setting @(e") = Zy(p(y’le")y. The map
@ is a Z[m]-homomorphism since if we replace the summation index y in the right
side of @(ne™) = Zycp(y’lne")y by ny, we get Zycp(y’le”)r/y. The function
@ — @ defines a homomorphism C?()?;Z)—»Homz[n](Cn,Z[n]) which is injective
since @ is recoverable from @ as the coefficient of y = 1. Furthermore, this ho-
momorphism is surjective since a Z[1]-homomorphism ¢ : M — Z[1r] has the form
PY(x) = Zy wy(x)y with Y, € Homy, (M, Z) satisfying (,Uy(x) = (,Ul(y’lx), so ; de-
termines (. The isomorphisms C}“()? 7)) =~ Homl[n](Cn,Z[Tr]) are isomorphisms of
cochain complexes, so the respective cohomology groups HZ‘()?; Z) and H"(X;Z[Tr])
are isomorphic. O

Cup and cap product work easily with local coefficients in a bundle of rings, the
latter concept being defined in the obvious way. The cap product can be used to
extend Poincaré duality to nonorientable manifolds M, using local coefficients in M,
or more generally My for aring R:

Theorem 3H.6. Foran arbitrary closed n-manifold M there is a fundamental class
[M] € H,,(M;Mpg) such that [M]A:Hk(M;MR)—>Hn_k(M;MR) is an isomorphism
for all k.

With the definitions we have given the proof is essentially the same as in §3.3, so
we shall not stop to give details here.
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Exercises

1. Compute H, (S} E) and H*(S';E) for E—S' the nontrivial bundle with fiber Z.

2. Compute the homology groups with local coefficients H, (M;M;) for a closed
nonorientable surface M.

3. Let B(X;G) be the set of isomorphism classes of bundles of groups E— X with
fiber G, and let E,— BAut(G) be the bundle corresponding to the ‘identity’ action
p:Aut(G) —Aut(G). Show that the map [X, BAut(G)]—B(X,G), [f]1+— f*(E,),is
a bijection if X is a CW complex, where [X,Y] denotes the set of homotopy classes
of maps X—Y.

4. Show that if finite connected CW complexes X and Y are homotopy equivalent,
then their universal covers X and Y are proper homotopy equivalent.

5. If X is a finite nonsimply-connected graph, show that H" (X;Z[m, X]) is zero un-
less n = 1, when it is the direct sum of a countably infinite number of Z’s. [Use
Proposition 3H.5 and compute HC"()?) as li_n}H"()?,)? — T;) for a suitable sequence
of finite subtrees T; C T, C --- of X with {J; T; = X.]

6. Show that homology groups Hﬁf (X;G) can be defined using locally finite chains,
which are formal sums >, g,o of singular simplices ¢ :A" — X with coefficients
Jo € G, such that each x € X has aneighborhood meeting the images of only finitely
many o’s with g, # 0. Develop this homology theory far enough to show that for
a locally compact CW complex X, Hflf (X;G) can be computed using infinite cellular
chains >, gen.



