Reviews:

Mathscience:

  1. Stefanescu, Mirela. Associativity condition for some alternative algebras of degree three.  Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 121-130, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.

  2. Flaut, Cristina.  Some examples of real division algebras,  S. tiint. Univ. Ovidius Constant. a Ser. Mat. 11 (2003), no. 2, 69-74.

  3. Goodaire, E. G. (3-NF); Polcino Milies, C. (BR-SPL-IMS); Parmenter, M. M. (3-NF) Central units in alternative loop rings. Arch.Math. (Basel) 85 (2005), no. 5, 389-396.

  4. Leroy,André; Matczuk, Jerzy (PL-WASW-IM) Goldie conditions for Ore extensions over semiprime rings. Algebr. Represent. Theory 8 (2005), no. 5, 679-688.

  5. Leroy,André; Matczuk, Jerzy (PL-WASW-IM) Ore extensions satisfying a polynomial identity. J. Algebra Appl. 5 (2006), no. 3, 287-306.

  6. Jain, S. K. [Jain, SurenderKumar] (1-OH); Al-Hazmi, Husain S. (1-OH); Alahmadi, Adel N. (1-OH) Right-left symmetry of right nonsingular right max-min CS prime rings. Comm. Algebra 34 (2006), no. 11, 3883-3889.

  7. Hentzel, I. R. (1-IASU); Peresi, L. A. (BR-SPL) The nucleus of the free alternative algebra. Experiment. Math. 15 (2006), no. 4, 445-454.

  8. Shen, Liang; Chen, Jianlong On strong Goldie dimension. Comm. Algebra 35 (2007), no. 10, 3018-3025.

  9. Charalambides, Stelios; Clark, John. CS modules relative to a torsion theory. Mediterr. J. Math. 4 (2007), no. 3, 291-308.

  10. Bhavanari, Satyanarayana; Dasari, Nagaraju; Balamurugan, Kuppareddy, Subramanyam; Lungisile,Godloza.Finite dimension in associative rings. Kyungpook Math. 48 (2008), no. 1, 37-43.

  11. Hentzel, I., R.Peresi, L. A. The nucleus of the free alternative algebra. Experiment. Math. 15 (2006), no. 4, 445-454..

  12. Cortes,Wagner; Haetinger, Claus On Lie ideals and left Jordan s-centralizers of 2-torsion-free rings. Math. J. Okayama Univ. 51 (2009), 111-119.

  13. Melania M. Moldovan, M. Seetharama Gowda Strict diagonal dominance and a Geršgorin type theorem in Euclidean Jordan algebras Linear Algebra and its Applications 431 (2009) 148-161

  14. Swain, Gordon A. Maps Preserving Zeros of xy* Communications in Algebra, 38: 1613-1620, 2010

  15. Toma Albu Goldie dimension, Dual Krull dimension and subdirect irreducibility Glasgow Math. J. 52A (2010) 19-32.

  16. Birkenmeier, Gary F.; Park, Jae Keol; Rizvi, S. Tariq Hulls of ring extensions. Canad. Math. Bull. Vol. 53 (4), 2010 pp. 587-601

  17. Birkenmeier, Gary F.; Park, Jae Keol; Rizvi, S. Tariq A theory of hulls for rings and modules. Ring and Modules Theory. Trends in Mathematics, 27-72.

Zentralblatt:

  1. Boudi, Nadia; Zitan, Fouad On Bernstein algebras satisfying chain conditions. Commun. Algebra 35, No. 7, 2116-2130 (2007).

  2. Cabello, J.C.; Cabrera, M. Structure theory for multiplicatively semiprime algebras. J. Algebra 282, No. 1, 386-421 (2004).

  3. Bezerra, N.; Picanco, J.; Costa, R. Existence of 2-exceptional Bernstein algebras. East-West J. Math. 7, No. 2, 153-164 (2005).

  4. Mencinger, Matej; Zalar, Borut A class of nonassociative algebras arising from quadratic ODEs. Commun. Algebra 33, No. 3, 807-828 (2005).

  5. Moreno, Guillermo Alternative elements in the Cayley-Dickson algebras. García-Compeán, Hugo (ed.) et al., Topics in mathematical physics, general relativity and cosmology in honor of Jerzy Plebánski. Proceedings of the 2002 international conference, Cinvestay, Mexico City, Mexico, September 17-20, 2002. Hackensack, NJ: World Scientific. 333-346 (2006).

  6. Cabello, J.C.; Cabrera, M.; Nieto, E. Closed prime ideals in algebras with semiprime multiplication algebra. Commun. Algebra 35, No. 12, 4245-4276 (2007).

  7. Kim, Hyuk; Kim, Kyunghee. The structure of assosymmetric algebras. J. Algebra 319, No. 6, 2243-2258 (2008).

  8. Perera, Francesc; Siles Molina, Mercedes Associative and Lie algebras of quotients. Publ. Mat., Barc. 52, No. 1, 129-149 (2008)..

  9. Kantor, Issai; Rowen, Louis The Peirce decomposition for generalized Jordan triple systems of finite order. J. Algebra 310, No. 2, 829-857 (2007).

  10. Vaˇs, Lia Extending higher derivations to rings and modules of quotients Int. J. Algebra 2, No. 13-16, 711-731 (2008).

  11. Cabello, J. C.; Cabrera, M. Inner derivations of alternative algebras over commutative rings. J. Algebra 319 (2008), no. 3, 911–937.

  12. Loos, Ottmar; Petersson, Holger P.; Racine, Michel L. Algebras whose multiplication algebra is semiprime. Adecomposition theorem. Algebra Number Theory 2, No. 8, 927-968 (2008).

  13. Breˇsar, Matej; Perera, Francesc; Sánchez Ortega, Juana; Siles Molina, Mercedes Computing the maximal algebra of quotients of a Lie algebra Forum Math. 21, No. 4, 601-620 (2009).

  14. Faulkner, John R. Lie tori of type BC2 and structurable quasitori Commun. Algebra 36, No. 7, 2593-2618 (2008).

  15. Beites, Patricia D.; Pozhidaev, Alexander P. On simple Filippov superalgebras of type A(n, n) Asian-Eur. J. Math. 1, No. 4, 469-487 (2008).

  16. Benkart, Georgia; Fernández López, Antonio The Lie inner ideal structure of associative rings revisited Commun. Algebra 37, No. 11, 3833-3850 (2009).

  17. Vaˇs, Lia Perfect symmetric rings of quotients J. Algebra Appl. 8, No. 5, 689-711 (2009).

  18. Allison, Bruce; Faulkner, John; Yoshii, Yoji Structurable tori Commun. Algebra 36, No. 6, 2265-2332 (2008).

  19. Matej Bresar and Antonio Fernendez Lopez On a Class of Finitary Lie Algebras Characterized Throuth Derivations Proceedings of the American Mathematical Society (138), Number 12, December 2010, Pages 4161–4166